
ACCELERATING GNSS SOFTWARE
RECEIVERS
ION GNSS+ 2016. PORTLAND, OR, SEPT. 14TH.
SESSION A1: ADVANCES IN GNSS SOFTWARE-DEFINED RECEIVERS

C. Fernández-Prades, J. Arribas, P. Closas

Centre Tecnològic de Telecomunicacions de Catalunya

10 years ago...

Back in 2006, Gregory W. Heckler published an open
source library implementing SIMD-based correlators for
GNSS software receivers.

G. W. Heckler and J. L. Garrison
SIMD Correlator library for GNSS software receivers
GPS Solutions, vol. 10, no. 4, pp. 269–276, Nov. 2006

That library included arithmetic functions that operate on
16 bit integers, providing MMX and SSE2 versions of each
function, as well as an MMX-enabled fixed point, radix-2,
FFT.

The code was then integrated into a software-defined GPS
L1 C/A receiver (still available online1), achieving
real-time operation in computers of that time.

1See https://github.com/gps-sdr/gps-sdr 1/40

https://github.com/gps-sdr/gps-sdr

Motivation

“The Rise of GNSS”:
◦ GNSS scenario with 100+ satellites, 10 different GNSS open

signal waveforms for civilian usage, belonging to 4 different
systems and broadcast at 4 different frequency bands.
◦ New modulations require more bandwidth and more

processing complexity on the receiver.
◦ The natural target is a multi-constellation, multi-band

GNSS receiver operating in real-time.
Computing goes parallel:

◦ A typical desktop in 2006: Pentium IV processor at 2.0 GHz,
dual-core technology, with memory bandwidths ∼ 2 GB/s.
◦ In 2016, Intel is planning to release their Broadwell-E

processor series, with a clock speed up to 3.50 GHz. Can
house up to 20 cores, with memory bandwidths ∼ 100 GB/s.

2/40

Computing Ecosystem

In 2016, desktop computers are not the dominant form
factor anymore.
◦ Laptops, gaming consoles, mini PCs, tablets and

smartphones has pushed into the market other sort of
processors with low power consumption figures and
specific features for multimedia content handling.
◦ Cloud computing paradigm.

This is a software design challenge

We need to address both efficiency and portability at the
same time.

3/40

Overview

1. Parallelization Strategies for GNSS Signal Processing

2. Task Parallelization

3. Data Parallelization

4. Implementation

5. Results

6. Conclusions

4/40

PARALLELIZATION STRATEGIES FOR
GNSS SIGNAL PROCESSING

Task parallelism

Shared-memory parallel computers can work on several tasks
at once:

by parceling them out to the different processors,
by executing multiple instruction streams in an interleaved

way in a single processor (multithreading), or
by a combination of both strategies.

Multi-threading

Tomake this potential performance gain effective, the software
running on the platform must be written in such a way that it
can spread its workload across multiple execution cores.

6/40

Data parallelism

Instructions that can be applied to multiple data elements in
parallel.
This computer architecture is known as Single Instruction
Multiple Data (SIMD).

Most modern processors implement some SIMD technology
(e.g., SSEx, AVX, NEON, ...).

7/40

Other forms of parallelism

Instruction-level parallelism
◦ Computer processors are composed of a number of

functional units that may be able to operate simultaneously.
◦ A processor that supports this is said to have a superscalar

architecture, and nowadays it is a common feature in
general-purpose microprocessors.
◦ Modern compilers put considerable effort into finding a

suitable ordering of operations that keeps many functional
units and paths to memory busy with useful work.

GPU / FPGA Offloading
◦ Some computational-intensive portions of the application

can be executed in an external device.

8/40

TASK PARALLELIZATION

A mathematical model for software radios

A Kahn process describes a model of computation where
processes are connected by communication channels to
form a network.

Processes produce data elements or tokens and send them
along a communication channel where they are consumed
by the waiting destination process.

Communication channels are the only method processes
may use to exchange information.

A very simple flow graph.

10/40

Kahn’s model of process networks

Systems that obey Kahn’s mathematical model are determinist:
the history of tokens produced on the communication channels
does not depend on the execution order.

With a proper scheduling policy, it is possible to implement
software defined radio process networks holding two key
properties:

Non-termination: understood as an infinite running flow
graph process without deadlocks situations, and

Strictly bounded: the number of data elements buffered
on the communication channels remains bounded for all
possible execution orders.

11/40

Baseband processing

At this level of abstraction, parallelization of operations to the
incoming signal is performed at a targeted satellite signal basis.

Input signal:

xq[n]�
Ns−1∑
i�0

α̃i(tn)s̃i ,T(tn − τin)e
− j2π fdin

tn e j2π fIFtn + w̃(tn)

At the matched filter output:

yik �
|aik |

2 K
sin(π∆ fdik

Tint)
π∆ fdik

Tint
·di

(
[k] Tb

Tint

)
·Rp̃q(∆τik)·e

− j(π∆ fdik
Tint+∆φik)+w̃ik

12/40

Typical receiver architecture

Pik � yik

(
∆τ̂ik−1 ,∆ f̂dik−1

,∆φ̂ik−1

)
Eik � yik

(
∆τ̂ik−1+ε,∆ f̂dik−1

,∆φ̂ik−1

)
Lik � yik

(
∆τ̂ik−1−ε,∆ f̂dik−1

,∆φ̂ik−1

)
13/40

DATA PARALLELIZATION

Single Instruction - Multiple Data (SIMD)

In SIMD technologies, the same set of instructions is
executed in parallel to different sets of data.

This reduces the amount of hardware control logic needed
by N times for the same amount of calculations, where N is
the width of the SIMD unit.
◦ 64-bit registers: MMX (1997).
◦ 128-bit registers: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,

NEON (for ARM processors).
◦ 256-bit registers: AVX, AVX2 (2013).
◦ 512-bit registers: AVX-512 (2016).

Designed for the acceleration of multimedia processing,
can be used for GNSS signal processing.

15/40

SIMD in software-defined GNSS receivers

Typical functions in a software-defined GNSS receiver:

NCO
Carrier

Generator

Code
Discr.

Phase
Discr.

Code
Loop
Filter

Carrier
Loop
Filter

Integrate
& Dump
Integrate
& Dump
Integrate
& Dump

Input
sample
stream

PRN
Codes

Multiple-delay
Resampler

L

P

E

16ic_rotator_dot_prod_16ic_xn

16ic_xn_resampler_16ic_xn

16ic_x2_multiply_16ic

16ic_x2_dot_prod_16ic_xn

16ic_x2_dot_prod_16ic

16ic_32fc_x2_rotator_16ic

16ic

32fc

16/40

Data Types (I/II)

Type name
in VOLK

Definition Sample stream

Signed integer,
8-bit two’s complement number
ranging from -128 to 127.“8i”

C type name: int8_t

[S0], [S1], [S2], ...

Unsigned integer, 8 bits
ranging from 0 to 255.“8u”
C type name: unsigned char

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type int8_t“8ic”
C type name: lv_8sc_t (*)

[SI
0+ jSQ

0], [S
I
1+ jSQ

1], ...

Signed integer,
16-bit two’s complement number
ranging from -32768 to 32767“16i”

C type name: int16_t

[S0], [S1], [S2], ...

Unsigned integer, 16 bits
ranging from 0 to 65535.“16u”
C++ type name: uint16_t

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type int16_t“16ic”
C type name: lv_16sc_t (*)

[SI
0+ jSQ

0], [S
I
1+ jSQ

1], ...

17/40

Data Types (I/II)

Type name
in VOLK

Definition Sample stream

Unsigned integer, 32 bits
ranging from 0 to 4294967295.“32u”
C type name: uint32_t

[S0], [S1], [S2], ...

Signed numbers with fractional parts,
can represent values ranging from
≈ 3.4×10−38 to 3.4×1038

with a precision of 7 digits (32 bits).
“32f”

C type name: float

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type float“32fc”
C++ type name: lv_32fc_t (*)

[SI
0+ jSQ

0], [S
I
1+ jSQ

1], ...

Unsigned integer, 64 bits
ranging from 0 to 264 − 1.“64u”
C type name: uint64_t

[S0], [S1], [S2], ...

Signed numbers with fractional parts,
can represent values ranging from
≈ 1.7×10−308 to 1.7×10308

with a precision of 15 digits (64 bits).
“64f”

C type name: double

[S0], [S1], [S2], ...

18/40

IMPLEMENTATION

GNSS-SDR: An Open Source Software-Defined Receiver

Implements the whole
processing chain from the
output of a RF front-end
up to computation of
observables and PVT
solutions.

Flexible and scalable
design.

Free and open source
software.

Source code available at https://github.com/gnss-sdr/gnss-sdr

20/40

https://github.com/gnss-sdr/gnss-sdr

GNU Radio signal processing block

Kahn’s mathematical model is implemented by GNU Radio, an
open source framework for software-defined radios.

Runtime Scheduler

handle_msg()
{
 …
}

work()
{
 …
}

Circular
Output
Buffer

notify_downstream()

from downstream

notify_upstream()

from upstream

upstream read pointer

Upstream
Output
Buffer

from downstream

output write
pointer

J. Corgan, “GNU Radio runtime operation,” in Proc. GNU Radio Conference, Washington, DC, Aug. 24–28 2015.

21/40

GNSS Receiver flow graph

GNSS-SDR features a thread-per-block implementation, which
scales well with the number of processors.

Signal
Conditioner

Signal
Source

Acquisition

Tracking Nav.
msg

Observables Signal
Sink

N parallel channels

The underlying scheduler avoids processing bottlenecks and
optimizes memory usage.

22/40

A new module of the Vector Optimized Library of Kernels

Typical functions in a GNSS receiver have been
implemented in an open source library: VOLK_GNSSSDR.

VOLK_GNSSSDR provides several implementations for
each function:
◦ A generic, plain C implementation,
◦ other implementations making use of different SIMD

technologies (SSE3, SSE4.1, AVX, NEON, ...).
A program runs all the implementations that can be

executed in your computer, annotating which is the fastest
and then selecting it at runtime when the function is called.

This strategy allows addressing efficiency and portability at the
same time!

23/40

RESULTS

Processing platforms (I/IV)

Platform #1 - Server: a Dell’s PowerEdge R730 server housing a
CPU with two Intel Xeon E5-2630 v3 at 2.4 GHz (8 cores, 16
threads each) and an NVIDIA Tesla K10 GPU with 2 x 1536
CUDA cores clocked at 745 MHz. The operating system during
tests was GNU/Linux Ubuntu 14.04, 64 bits, using GCC 4.9.2.

25/40

Processing platforms (II/IV)

Platform #2 - Laptop: Apple’s MacBook Pro Late 2013, with an
Intel Mobile Core i7-4558U (quad-core) CPU at 2.4 GHz (active
cores can be speeded up to 3.8 GHz), and Hyper Threading
technology allows the system to recognize eight total “cores” or
“threads” (four real and four virtual), plus an NVIDIA GeForce
GT 750M GPU with 384 CUDA cores clocked at 967 MHz. The
operating system during tests was Mac OS X 10.11, using Apple
LLVM / Clang version 7.0.2.

26/40

Processing platforms (III/IV)

Platform #3 - Embedded development kit: NVIDIA’s Jetson
TK1 developer kit, equipped with a quad-core ARM Cortex-A15
CPU at 2.32 GHz and an NVIDIA Kepler GPU with 192 CUDA
cores clocked at 950 MHz. The operating system during tests
was GNU/Linux Ubuntu 14.04, 32 bits, using GCC 4.8.4.

27/40

Processing platforms (IV/IV)

Platform #4 - Mini-computer: Raspberry Pi 3 Model B,
equipped with a Broadcom BCM2837 CPU (64 bit, ARMv8
quad-core ARM Cortex A53) clocked at 1.2 GHz. The operating
system used during tests was Raspbian GNU/Linux 8 (jessie), 32
bits, using GCC 4.9.2.

28/40

Processing results for Platform #1 - Server

a
av
x2

a
av
x2
re
lo
ad

a
ss
e3

a
ss
e3
re
lo
ad

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

u
av
x2

u
av
x2
re
lo
ad

u
ss
e3

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 16ic rotator dot prod 16ic xn

a
av
x

a
ss
e3

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

u
av
x

u
ss
e3

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 32fc rotator dot prod 32fc xn

29/40

Processing results for Platform #2 - Laptop

a
ss
e3

a
ss
e3
re
lo
ad

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

u
ss
e3

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 16ic rotator dot prod 16ic xn

a
av
x

a
ss
e3

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

u
av
x

u
ss
e3

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 32fc rotator dot prod 32fc xn

30/40

Processing results for Platform #3 - ARM EDK

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

ne
on

ne
on

vm
a

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 16ic rotator dot prod 16ic xn

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

ne
on

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 32fc rotator dot prod 32fc xn

31/40

Processing results for Platform #4 - Raspberry Pi 3

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

ne
on

ne
on

vm
a

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 16ic rotator dot prod 16ic xn

ge
ne
ri
c

ge
ne
ri
c
re
lo
ad

ne
on

0

5

10

15

20

25

A
cc
el
er
a
ti
o
n
w
it
h
re
sp
ec
t
to

p
la
in

C 32fc rotator dot prod 32fc xn

32/40

Processing results with CPUs

3-correlator GPS L1 C/A channels with different sampling rates.

0 20 40 60 80 100

Number of parallel channels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
x
ec
u
ti
o
n
ti
m
e
[s
]

×10−3 CPU Correlation size: 2048 samples

Platform #1
Platform #2
Platform #3
Platform #4

0 20 40 60 80 100

Number of parallel channels

0

0.5

1

1.5

2

2.5

3

3.5

E
x
ec
u
ti
o
n
ti
m
e
[s
]

×10−3 CPU Correlation size: 4096 samples

Platform #1
Platform #2
Platform #3
Platform #4

0 20 40 60 80 100

Number of parallel channels

0

1

2

3

4

5

6

7

8

9

E
x
ec
u
ti
o
n
ti
m
e
[s
]

×10−3 CPU Correlation size: 8192 samples

Platform #1
Platform #2
Platform #3
Platform #4

33/40

Processing results of GPU offloading

3-correlator GPS L1 C/A channels with different sampling
rates.

Table: Maximum number of real-time parallel channels for each
platform using GPU accelerators.

Correlator length 2048 4096 8192
Platform #1 65 45 25
Platform #2 12 11 10
Platform #3 1 0 0

34/40

Processing results with GPUs

3-correlator GPS L1 C/A channels with different sampling rates.

0 20 40 60 80 100

Number of parallel channels

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

E
x
ec
u
ti
o
n
ti
m
e
[s
]

GPU Correlation size: 2048 samples

Platform #1
Platform #2
Platform #3

0 20 40 60 80 100

Number of parallel channels

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

E
x
ec
u
ti
o
n
ti
m
e
[s
]

GPU Correlation size: 4096 samples

Platform #1
Platform #2
Platform #3

0 20 40 60 80 100

Number of parallel channels

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

E
x
ec
u
ti
o
n
ti
m
e
[s
]

GPU Correlation size: 8192 samples

Platform #1
Platform #2
Platform #3

35/40

CONCLUSIONS

Conclusions (I/II)

We described several parallelization techniques addressing
computational efficiency at different abstraction layers.

All those concepts were applied into a practical
implementation available online under a free and open
source software license.

Building upon well-established open source frameworks
and libraries, we showed that it is possible to achieve
real-time operation in different computing environments.

37/40

Conclusions (II/II)

Portability was demonstrated by building and executing the
same source code in a wide range of computing platforms, from
high-end servers to tiny and affordable computers, using
different operating systems and compilers, and showing notable
acceleration factors of key operations in all of them.

As a practical outcome of the presented work, this paper
introduced, to the best of authors’ knowledge, the first free and
open source software-defined GNSS receiver able to sustain
real-time processing and to provide position fixes in ARM-based
devices.

38/40

More info available online

Thank you for your attention!

Find out more at:

Source code: https://github.com/gnss-sdr/gnss-sdr
Webpage: http://gnss-sdr.org

39/40

https://github.com/gnss-sdr/gnss-sdr
http://gnss-sdr.org

Acknowledgements

AUDITOR - Advanced Multi-Constellation EGNSS Augmentation and
Monitoring Network and its Application in Precision Agriculture.

This work has received funding from the European GNSS Agency under the
European Union’s Horizon 2020 research and innovation programme under
grant agreement no. 687367.

40/40

	Parallelization Strategies for GNSS Signal Processing
	Task Parallelization
	Data Parallelization
	Implementation
	Results
	Conclusions

