Consider a composite function $f \circ g$. Does the independent variable have to be the same in each function? That is $f(x)$ and $g(x)$?

Answer: you can choose any name for the independent variable. What counts here is that the composition is defined whenever the image of g is contained in the domain of f. For instance imagine that g maps the number of square meters of a flat in Venice into the price of such a flat per month. Then f should act on the prices of flats per month (for instance f may "send" a price of a flat per month into the salary that you are expected to earn.

In your example $f(x)=x(2)+4$ and $g(t)=4 t-5$ you could have written also $f(x)=x^{(2)}+4$ and $g(x)=4 x-5$. You may also write (names of the variables are not important!)

$$
\forall z \quad f \circ g(z)=f(g(z))=f(4 z-5)=(4 z-5)^{2}+4 .
$$

