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Suppose we have some topological spaces lying around. How can we
build new topological spaces using the old ones? There are four fundamental
constructions: subspaces, disjoint unions, products, and quotients. Defining
the topologies on each can be done in two ways. One way is through ad
hoc definitions. These definitions make some intuitive sense, but look very
different from one construction to the next. The other way uses canonical
maps. Canonical maps provide a single framework in which all constructions
obey the same unifying principle.

1 Canonical maps

Functions are pretty arbitrary things. Each element of the domain gets
mapped somewhere in the range. However, there are certain situations when
there are canonical maps available to us. We use the word canonical here
to mean that there is only one reasonable choice of function to describe the
connection between related sets.

Suppose A is a subset of X. Is there a natural choice of map, either from
A to X or from X to A? Yes, the inclusion map:

i : A→ X,

a 7→ a.

This choice is canonical. We’re not suggesting there is only one way to map
A to X. But there’s only one obvious way that we can all agree on. Since A
is a subset of X, the easiest thing to do is to send points of A to themselves.
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Note that there is no canonical map X → A. The points that are already
in A can go to themselves, but then where do we send points from X \ A?
There is no obvious choice here.

Now consider the relationship between X, Y , and the disjoint union X q
Y . Again, it’s inclusion:

iX : X → X q Y,

x 7→ x,

iY : Y → X q Y,

y 7→ y.

For Cartesian products, things work a little differently. On first glance, it
seems that one might be able to define maps from X → X×Y (and similarly
from Y → X×Y ) like we did for the disjoint union above. But where would
you send a point x ∈ X under such a map?

x 7→ (x, ?)

Instead, the canonical maps are the projection maps and they go the
other way:

pX : X × Y → X,

(x, y) 7→ x,

pY : X × Y → Y,

(x, y) 7→ y.

Quotients are slightly trickier. Suppose X is a set with an equivalence
relation ∼. (Recall that an equivalence relation is a relation on X that is
reflexive, symmetric, and transitive.) The most important fact about equiv-
alence relations is that they partition sets into equivalence classes. So for
each x ∈ X, we have the equivalence class

[x] = {y ∈ X | x ∼ y}.

Note that if x ∼ y, then [x] = [y] and if x � y, then [x] ∩ [y] = ∅.
We define the quotient space X/∼ to be the set of equivalence classes of

X under the equivalence relation ∼. The canonical map here is the quotient
map:

q : X → X/∼,
x 7→ [x].
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2 Making maps continuous

Suppose (X, TX) and (Y, TY ) are topological spaces. (In other words, X
and Y are sets, and TX and TY are subsets of the power sets P(X) and
P(Y ), respectively, obeying the axioms for a topological space.) Rather than
identifying open sets via their inclusion in the topology—e.g., U ∈ TX—we
will simply say, “U is open in X” and never mention the T s again!

We know that a map f : X → Y is continuous if for every open set U in
Y , the pre-image f−1(U) is open in X. Now consider two situations:

1. What if we have a topological space Y , but X is just a set? Is it possible
to put a topology on X that will ensure that f is continuous?

2. What if the topology on X is known, but Y is just a set? How can we
topologize Y to make f continuous?

A trivial answer to the first scenario is just to put the discrete topology on
X. The pre-image of any set in Y is forced to be open, and hence, f is forced
to be continuous. Of course, this is a terrible idea: the discrete topology is
totally useless. Instead, we should try to find the smallest1 topology on X
that makes f continuous.

1I use the terms “small” and “large” to mean topologies that have fewer or more open
sets, respectively. Some people use the terms “weak” and “strong” to mean the same thing,
but I think those terms are not very intuitive. Slightly better are the terms “coarse” and
“fine”, but I still prefer “small” and ”large”.
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In the second scenario, things are a little different. The most trivial thing
to do to Y is to put the indiscrete topology on it. Since the pre-image of the
empty set is the empty set, and the pre-image of Y is X, the function f is
trivially continuous. This is an equally terrible thing to do. Clearly we want
the largest topology on Y that will still keep f continuous. (Make sure you
understand why in one case we want the smallest topology and in the other
case we want the largest topology.)

In the next few sections, we will show that there are natural topologies on
subspaces, disjoint unions, products, and quotients that respect the continu-
ity of the canonical maps. In particular, when the unknown topology needs
to be defined on the domain, we will ensure that we choose the smallest
topology that makes its corresponding canonical map continuous; when the
unknown topology needs to be defined on the codomain, we will build the
largest possible topology that respects the continuity of its canonical map.
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3 Subspaces

Consider the canonical map i : A → X and let U be an open set in X. For
continuity, we need i−1(U) to be open in A. But i−1(U) is just A ∩ U . (See
Figure 1.) So at a minimum, we need all sets of the form A ∩ U to be open
in A. But one can verify that all sets of the form A ∩ U satisfy the axioms
for a topology. So this is the smallest number of open sets we need to make
i continuous.

4 Disjoint unions

For disjoint unions, the canonical maps are

iX : X → X q Y,

x 7→ x,

iY : Y → X q Y,

y 7→ y.

Now it is the codomain on which we must define a topology, so the strat-
egy is a little different. We must think about sets U ⊆ X q Y for which
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X
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Figure 1: The orange region is an open set of A in the subspace topology.

i−1
X (U) and i−1

Y (U) are open in X and Y , respectively.
Since these are still inclusion maps, this works much the same way as

with subsets:

i−1
X (U) = X ∩ U,

i−1
Y (U) = Y ∩ U.

But X ∩U is just some subset of X; let’s call it UX . As long as UX is open in
X, continuity of iX is guaranteed. The same argument goes for Y . Therefore,
in order for a set to pull back to open sets UX in X and UY in Y , U needs
to be of the form U = UX q UY . (See Figure 2.)

If we try to add any more open sets to X q Y , we would have to include
something not of the form UX qUY . But then, such a set would not restrict
to open sets in both X and Y . Therefore, this is the largest topology one can
put on the disjoint union. Of course, one still needs to prove that it actually
is a topology, but this is straightforward.
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X Y

UX UY

Figure 2: An open set of X q Y must be the union of UX and UY .

5 Products

The canonical maps are

pX : X × Y → X,

(x, y) 7→ x,

pX : X × Y → Y,

(x, y) 7→ y.

Start with an open set in X; call it UX . The pre-image p−1
X (UX) is just U×Y .

Likewise, if UY is open in Y , then p−1
Y (UY ) = X × UY . (See Figure 3.)

Because we are defining a topology on the domain of the projection maps,
we are interested in the smallest topology making those maps continuous.
When we did this with the subset topology, the pre-images we found were
enough; those sets already formed a topology. In this case, however, the sets
of the form UX × Y and X × UY do not satisfy the axioms. Just take the
intersection of these to get the set UX × UY (the green part in Figure 3),
which cannot be written as p−1

X (U) or p−1
Y (U) for any U .

So how many more open sets do we need before we get a topology? The
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Figure 3: UX × Y and X × UY are subbasis elements. Their intersection
UX × UY is a basis element.

collection of sets of the form UX × Y and X ×UY is called a subbasis (some-
times called a subbase). To get from a subbasis to a topology, we need first
to take all finite intersections of subbasis elements. This will give us all sets
of the form UX × UY . This collection is now called a basis (or base). Then,
we have to include arbitrary unions of those basis elements.2

Once we have taken finite intersections and then arbitrary unions (and it
is necessary to do this to make sure we have an actual topology), then we
don’t need to add any more sets. So now we have the smallest number of
open sets possible. It wasn’t quite as easy to get there as it was with the
subspace topology, but the process was the same: define open sets so that
the canonical maps—in this case, the projection maps—are continuous.

2One may wonder now if the collection is really a topology. What if we could get even
more open sets by taking more finite intersections? And then wouldn’t we need arbitrary
unions of those? And then more finite intersections and more unions. . . ? It is a relatively
straightforward theorem that, in fact, we only need to take finite intersections and then
arbitrary unions once.
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6 Quotients

The canonical map for a quotient space (often called an identification space)
is

q : X → X/∼,
x 7→ [x].

As with the disjoint union, the codomain is the space in need of a topology;
therefore, we want to look for sets U in X/∼ for which q−1(U) is open in X.
As before, we wish to find the largest number of such sets U .

Unlike the previous three examples, there is not much more to say for
this case. Because X and ∼ could be just about anything, there is no more
direct way to define the quotient topology at this level of generality. The sets
U with q−1(U) open form a topology on X/∼ (exercise for the reader), so
there’s nothing more to say. Intuition about what this really means comes
from looking at some illustrative examples.

The first example is X = R (and its usual topology) with the relation
x ∼ y iff x− y is an integer. The set R/∼ is set equivalent to [0, 1). (Do you
see why?) But what is the topology? Note that on the real line, 0.9999 is
quite close to 1.0001. But 1.0001 ∼ 0.0001, and in [0, 1), 0.9999 and 0.0001
are quite far apart. In Figure 4, you can see that [0, 1) cannot be the correct
quotient space. There is an open set in [0, 1) whose pre-image is not open in
R.

R

[0, 1)

Figure 4: The yellow set is open in [0, 1), but its pre-image is not open in R.
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So here’s a slightly different way of looking at it. If we consider instead
the unit interval I = [0, 1], it’s almost the same thing as R/ ∼, but since
0 ∼ 1, these are really the same point of R/∼. What happens if you take
the interval I and “glue” the endpoints together? You get S1, the circle.
Figure 5 illustrates this correct interpretation.

[0, 1] S1

Figure 5: Indentifying the endpoints of [0, 1] gives the circle S1. Notice now
that open sets in S1 pull back to open sets in [0, 1].

Of course, we could have obtained the same space by starting out with
the space I = [0, 1] (the unit interval with the subspace topology) and the
following equivalence relation:

x ∼

{
x if 0 < x < 1

0 if x = 0, 1

In this relation, most of the equivalance classes [x] consist of just the single
point x, and [0] = [1] = {0, 1}.

The latter approach can be generalized. Suppose X is a topological space
with A ⊆ X. Let a be a point in A and define the following equivalence
relation on X:

x ∼

{
x if x ∈ X \ A
a if x ∈ A

The equivalence classes consist of all the points in X \ A as single-element
classes, and one class [a] containing all of A. The quotient space X/∼ looks
like X except with all the points in A collapsed to a single point. The circle
S1, as defined above, is the special case where X = I and A = {0, 1}.3

3Note that S1 could also be topologized as a subspace of R2. It’s instructive (and com-
forting!) to prove that S1 as a quotient and S1 as a subspace are, indeed, homeomorphic.
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This quotient space construction is usually written as X/A. (Don’t con-
fuse this with X \ A!)

Here’s another interesting example. Take the unit disk

D2 = {x ∈ R2 | |x| ≤ 1}.

The boundary of the disk is

∂D2 = {x ∈ R2 | |x| = 1}.

Can you see that ∂D2 = S1? Now, what is D2/∂D2 (or written another way,
D2/S1)? Imagine taking the boundary of a disk and collapsing it to a single
point. Figure 6 shows the process. The result is the 2-sphere S2:

D2/∂D2 = D2/S1 ∼= S2.

D2

S2

Figure 6: Collapsing the boundary of the disk D2 to a point, creating S2.
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Nothing in this construction depended on the dimension being two. What
is D1/∂D1? This can also be written as D1/S0.

What is D1? By definition, it’s

D1 = {x ∈ R | |x| ≤ 1}.

In other words, it’s just [−1, 1].
What is S0, the 0-sphere? Its definition is

S0 = {x ∈ R | |x| = 1}.

This is just the set {−1, 1}. Putting it all together, D1/S0 is the interval
[−1, 1] with the points −1 and 1 glued together. It’s the exact same con-
struction we did earlier to get S1 (except with a slightly larger interval, but
it’s topology, so who cares?). Therefore,

D1/∂D1 = D1/S0 ∼= S1.

In any dimension,
Dn = {x ∈ Rn | |x| ≤ 1},

with boundary
∂Dn = {x ∈ Rn | |x| = 1},

so that
Dn/∂Dn = Dn/Sn−1 ∼= Sn,

but it’s hard to picture what this looks like for n ≥ 3. (For n = 3, you can
picture the 3-ball D3 sitting in R3, but then how would you gather up the
boundary sphere and glue it all to a single point? The resulting 3-sphere S3

lives naturally in four dimensions, which isn’t so easy to imagine!)
As another important example, start with R2 and impose the relation

(x1, y1) ∼ (x2, y2) iff both x1 − x2 and y1 − y2 are integers. The quotient
R2/ ∼ is set equivalent to the product [0, 1) × [0, 1). (Again, do you see
why?) But the topology is not right.

Instead, view this as the unit square I2 = I×I with the following relation:

(x, y) ∼


(x, y), 0 < x < 1 and 0 < y < 1

(x, 0), y = 0, 1

(0, y), x = 0, 1.
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(At the four corners of the square there is no inconsistency in this definiton:
(0, 0) ∼ (0, 1) ∼ (1, 0) ∼ (1, 1).) Intuitively this means we should glue the
two sides of the square in pairs. Figure 7 shows the result. It’s the torus
T 2. The torus is only one of many interesting surfaces that can be formed
by taking some piece of the plane and gluing various edges together.

If you want to have some fun, see if you can figure out why T 2 ∼= S1×S1.

I2

T 2

Figure 7: Gluing the edges of a square in pairs gives the torus T 2.

7 and beyond. . .

Once you have the fundamental four constructions, you can do all sorts of
other stuff. Without going into much detail, here’s a list of interesting con-
structions:

• The wedge sum X ∨ Y is defined by choosing specific points x ∈ X
and y ∈ Y , and then gluing X and Y at a single point, fusing together
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points x and y. In a further abuse of the quotient notation:

X ∨ Y = (X q Y ) /(x ∼ y)

(meaning only x and y are glued).

• The smash product X ∧ Y is

X ∧ Y = (X × Y ) / (X ∨ Y ) .

It’s much harder to give an intuitive description of the smash product.

• The cylinder on X is just X × I. This is a generalization of what you
already know as a cylinder with X = S1.

• The cone on X, often denoted CX, is formed by taking the cylinder
on X and then identifying all the points at one end:

CX = (X × I) / (X × {0}) .

Again, think about X = S1 to recover the special case that you are
used to calling a cone.

• The suspension of X, often denoted SX, is basically a double cone:

SX = (X × I) / ∼

where ∼ collapses all of X × {0} to a point, and all of X × {1} to a
point.

• The mapping cylinder of a function f : X → Y is defined to be

Mf = ((X × I)q Y ) / ((x, 1) ∼ f(x)) .

Basically, this is the cylinder on X with one end glued to Y by fusing
x and f(x).

• The mapping cone is similar:

Cf = Mf/ (X × {0}) .

In other words, it’s just the mapping cylinder, except the end not at-
tached to Y is collapsed to a point.
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• The mapping torus is very similar to the mapping cylinder in the special
case when f is a homeomorphism of X to itself:

Tf = (X × I) / ((x, 0) ∼ (f(x), 1)) .

The idea here is that the cylinder has a copy of X on both ends, so you
glue the ends together, fusing x and f(x).
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