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Periodic Numbers

Example
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u(n) = [3, 1, 4]n
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Periodic Numbers

Definition
Let n be a discrete variable, i.e. n ∈ Z. A 1-dimensional periodic number
is a function that depends periodically on n.

u(n) = [u0, u1, . . . , ud−1]n =





u0 if n ≡ 0 (mod d)

u1 if n ≡ 1 (mod d)
...

ud−1 if n ≡ d − 1 (mod d)

d is called the period.
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Quasi-Polynomials

Example
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Quasi-Polynomials

Definition
A polynomial in a variable x is a linear combination of powers of x :

f (x) =

g∑

i=0

cix
i

Definition
A quasi-polynomial in a variable x is a polynomial expression with
periodic numbers as coefficients:

f (n) =

g∑

i=0

ui (n)ni

with ui (n) periodic numbers.
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Where do Quasi-Polynomials arise?

Example
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Where do Quasi-Polynomials arise?

The number of integer points in a parametric polytope Pp of
dimension n is expressed as a piecewise a quasi-polynomial of degree
n in p (Clauss and Loechner).

More general polyhedral counting problems:
Systems of linear inequalities combined with ∨,∧,¬,∀, or ∃
(Presburger formulas).

Many problems in static program analysis can be expressed as
polyhedral counting problems.
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Why do we need bounds on quasi-polynomials?

Some problems in static program analysis need bounds on
quasi-polynomials.

Example

Number of live elements = quasi-polynomial
⇓

Memory usage = maximum over all execution points
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Continuous vs. Discrete domain extrema of polynomials

Discrete domain ⇒ evaluate in each point
Not possible for

parametric domains

large domains (NP-complete)

H. Devos et al. (Ghent University) Finding Bounds on Ehrhart Quasi-Polynomials ACES’07, Edegem 14 / 19



Continuous vs. Discrete domain extrema of polynomials
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The relative difference is
smaller for

I larger intervals
I lower degree

⇒ Continuous-domain extrema
can be used as approximation
of discrete-domain extrema.
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How: Mod Classes

Example
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Good for

small period

large domains
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How: Other Methods

Other methods

needed for large periods

offer trade-off between
accuracy and
computation time

see poster
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Conclusions and Future Work

Bounds on quasi-polynomials useful for static program analysis

Different methods fit different situations (period, degree, domain
size).

Outlook
I A hybrid method should be constructed.
I Parametric bounds on parameterized quasi-polynomials
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