MATH 336 Presentation Fixed Point and Steffensen's Acceleration Method

Zekeriya Ünal

Boğaziçi University

27/05/2015

- Fixed Point Iteration Method
 - Banach Fixed Point Theorem
 - The Fixed Point Algorithm
 - Fixed Point The Case Where Multiple Derivatives Are Zero at The Fixed Point
- Steffensen's Acceleration Method
 - Aitken's Δ^2 Method
 - Steffensen's Acceleration Method
- 3 Comparison With Fixed point iteration and Steffensen's Acceleration Method

Definition

A point p is a **fixed point** for a given function g if g(p) = p.

Definition

A point p is a **fixed point** for a given function g if g(p) = p.

Remark

Fixed point problems and root finding problems are infact equivalent.

• if p is a fixed point of the function g, then p is a root of the function

$$f(x) = [g(x) - x]h(x)$$

[as long as $h(x) \in \mathbb{R}$]

• if p is a root of the function of f, then p is a fixed point of the function

$$g(x) = x - h(x)f(x)$$

[as long as $h(x) \in \mathbb{R}$]

Definition

Let U be a subset of a metric space X.

A function g:U \to X called **Lipschitz continuous** provided there exists a constant $\lambda \geq 0$ (called Lipschitz constant)

such that $\forall x,y \in U \ d(g(x),g(y)) \leq d(x,y)$

if $\lambda \in [0,1]$, then g is called **contraction** (with contraction constant λ).

Definition

Let U be a subset of a metric space X.

A function g:U \rightarrow X called **Lipschitz continuous** provided there exists a constant $\lambda \ge 0$ (called Lipschitz constant)

such that $\forall x,y \in U \ d(g(x),g(y)) \le d(x,y)$

if $\lambda \in [0,1]$, then g is called **contraction** (with contraction constant λ).

Theorem (A Fixed Point Theorem)

Suppose $g : [a, b] \rightarrow [a, b]$ is continuous. Then g has a fixed point.

Lemma

A contraction has at most one fixed point.

Lemma

A contraction has at most one fixed point.

Corollary

Suppose $g:[a,b] \to [a,b]$ is continuous and $\lambda:=\sup |g'(x)|<1$ for $x\in (a,b)$

Then g is a contraction with contraction constant λ .

Graphical determination of the existence of a fixed point for the function $g(x) = \frac{x^2-3}{2}$

Theorem (Banach Fixed Point Theorem)

Let U be a complete subset of a metric space X, and let $g:U \rightarrow U$ be a contraction with contraction constant λ . Then

Theorem (Banach Fixed Point Theorem)

Let U be a complete subset of a metric space X, and let $g:U \rightarrow U$ be a contraction with contraction constant λ .

Then

- g has a unique fixed point, say p.
- For any sequence $\{x_n\}$ defined by $x_n = g(x_{n-1})$, n=1,2,... converges to this unique fixed point p.

Theorem (Banach Fixed Point Theorem)

Let U be a complete subset of a metric space X, and let $g:U \rightarrow U$ be a contraction with contraction constant λ .

Then

- g has a unique fixed point, say p.
- For any sequence $\{x_n\}$ defined by $x_n=g(x_{n-1})$, n=1,2,... converges to this unique fixed point p. Moreover, we have the **a priori** error estimate

$$\mid x_n - p \mid \leq \frac{\lambda^n}{1 - \lambda} \mid x_1 - x_0 \mid$$

Theorem (Banach Fixed Point Theorem)

Let *U* be a complete subset of a metric space *X*, and let $g:U \rightarrow U$ be a contraction with contraction constant λ .

Then

- g has a unique fixed point, say p.
- For any sequence $\{x_n\}$ defined by $x_n=g(x_{n-1})$, n=1,2,... converges to this unique fixed point p. Moreover, we have the **a priori** error estimate

$$\mid x_n - p \mid \leq \frac{\lambda^n}{1 - \lambda} \mid x_1 - x_0 \mid$$

and the a posteriori error estimate

$$|x_n - p| \le \frac{\lambda}{1-\lambda} |x_n - x_{n-1}|$$

Proof

For n > m, we have

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_{m}|$$

$$by*$$

$$\leq (\lambda^{n-1} + \lambda^{n-2} + \dots + \lambda^{m}) |x_{1} - x_{0}|$$

$$= \lambda^{m} (\lambda^{n-m-1} + \lambda^{n-m-2} + \dots + 1) |x_{1} - x_{0}|$$

$$= \lambda^{m} \frac{1 - \lambda^{n-m}}{1 - \lambda} |x_{1} - x_{0}| \leq \frac{\lambda^{m}}{1 - \lambda} |x_{1} - x_{0}|$$

so that x_n is Cauchy sequence in U.

Since U is complete, x_n converges to a point $p \in U$

$$* \mid x_k - x_{k-1} \mid = \mid g(x_{k-1}) - g(x_{k-2}) \mid \leq \lambda \mid x_{k-1} - x_{k-2} \mid \leq .. \leq \lambda^{k-1} \mid x_1 - x_0 \mid$$

Now, since g being contraction is continuous, we have

$$p = \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_{n-1}) = g(\lim_{n \to \infty} x_{n-1}) = g(p)$$

so that p is fixed point of g.

By the lemma p is the unique fixed point of g.

Now, since g being contraction is continuous, we have

$$p = \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_{n-1}) = g(\lim_{n \to \infty} x_{n-1}) = g(p)$$

so that p is fixed point of g.

By the lemma p is the unique fixed point of g.

Since

$$\mid x_n - x_m \mid \leq \frac{\lambda^m}{1 - \lambda} \mid x_1 - x_0 \mid,$$

letting $n \rightarrow \infty$

Now, since g being contraction is continuous, we have

$$p = \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_{n-1}) = g(\lim_{n \to \infty} x_{n-1}) = g(p)$$

so that p is fixed point of g.

By the lemma p is the unique fixed point of g.

Since

$$|x_n-x_m| \leq \frac{\lambda^m}{1-\lambda} |x_1-x_0|,$$

letting $n \rightarrow \infty$

we get

$$\mid p - x_m \mid \leq \frac{\lambda^m}{1 - \lambda} \mid x_1 - x_0 \mid$$

for $y_0 = x_{n-1}, y_1 = x_n$

$$\mid y_1 - p \mid \leq \frac{\lambda}{1 - \lambda} \mid y_1 - y_0 \mid$$

The Fixed Point Algorithm

The Fixed Point Algorithm

If g has a fixed point p, then the fixed point algorithm generates a sequence $\{x_n\}$ defined as

 x_0 : arbitrary but fixed,

 $x_n = g(x_{n-1}), n=1,2,3,...$ to approximate p.

Fixed Point The Case Where Multiple Derivatives Are Zero at The Fixed Point

Theorem

Let g be a continuous function on the closed internal [a, b] with $\alpha > 1$ continuous derivatives on the internal (a,b). Further, Let $p \in (a,b)$ be a fixed point of g.

Fixed Point The Case Where Multiple Derivatives Are Zero at The Fixed Point

Theorem

Let g be a continuous function on the closed internal [a,b] with $\alpha>1$ continuous derivatives on the internal (a,b).

Further, Let $p \in (a,b)$ be a fixed point of g.

if

$$g'(p) = g''(p) = ... = g^{(\alpha-1)}(p) = 0$$

but $g^{(\alpha)}(p) \neq 0$,

Fixed Point The Case Where Multiple Derivatives Are Zero at The Fixed Point

Theorem

Let g be a continuous function on the closed internal [a,b] with $\alpha>1$ continuous derivatives on the internal (a,b).

Further, Let $p \in (a,b)$ be a fixed point of g.

if

$$g'(p) = g''(p) = \dots = g^{(\alpha-1)}(p) = 0$$

but $g^{(\alpha)}(p) \neq 0$,

then there exist a $\delta > 0$ such that for any $p_0 \in [p - \delta, p + \delta]$, the sequence $p_n = g(p_{n-1})$ converges to the fixed point p of order α with asymtotic error constant

$$\lim_{n\to\infty}\frac{\mid e_{n+1}\mid}{\mid e_{n}\mid^{\alpha}}=\frac{\mid g^{(\alpha)}(p)\mid}{\alpha!}$$

Let's start by establishing the existence of $\delta > 0$ such that for any $p_0 \in [p - \delta, p + \delta]$, the sequence $p_n = g(p_{n-1})$ converges to the fixed point p.

Let's start by establishing the existence of $\delta > 0$ such that for any $p_0 \in [p-\delta, p+\delta]$, the sequence $p_n = g(p_{n-1})$ converges to the fixed point p.

Let $\lambda < 1$. Since g'(p) = 0 and g' is continuous, it follows that there exists a $\delta > 0$ such that $|g'(x)| \le \lambda < 1$ for all $x \in I \equiv [p - \delta, p + \delta]$ From this, it follows that $g:I \to I$; for if $x \in I$ then,

Let's start by establishing the existence of $\delta > 0$ such that for any $p_0 \in [p-\delta, p+\delta]$, the sequence $p_n = g(p_{n-1})$ converges to the fixed point p.

Let $\lambda < 1$. Since g'(p) = 0 and g' is continuous, it follows that there exists a $\delta > 0$ such that $|g'(x)| \le \lambda < 1$ for all $x \in I \equiv [p - \delta, p + \delta]$ From this, it follows that $g:I \to I$; for if $x \in I$ then,

$$|g(x) - p| = |g(x) - g(p)|$$

$$= |g'(\xi)||x - p|$$

$$\leq \lambda |x - p| < |x - p|$$

$$\leq \delta$$

Let's start by establishing the existence of $\delta>0$ such that for any $p_0\in[p-\delta,p+\delta]$, the sequence $p_n=g(p_{n-1})$ converges to the fixed point p.

Let $\lambda < 1$. Since g'(p) = 0 and g' is continuous, it follows that there exists a $\delta > 0$ such that $|g'(x)| \le \lambda < 1$ for all $x \in I \equiv [p - \delta, p + \delta]$ From this, it follows that $g:I \to I$; for if $x \in I$ then,

$$|g(x) - p| = |g(x) - g(p)|$$

= $|g'(\xi)| |x - p|$
 $\leq \lambda |x - p| < |x - p|$
 $\leq \delta$

Therefore by the a fixed point theorem established earlier, the sequence $p_n = g(p_{n-1})$ converges to the fixed point p for any $p_0 \in [p - \delta, p + \delta]$.

To establish the order of convergence, let $x \in I$ and expand the iteration function g into a Taylor series about x=p:

$$g(x) = g(p) + g'(p)(x-p) + \dots + \frac{g^{\alpha-1}(p)}{(\alpha-1)!}(x-p)^{\alpha-1} + \frac{g^{\alpha}(\xi)}{(\alpha)!}(x-p)^{\alpha}$$

where ξ is between x and p.

To establish the order of convergence, let $x \in I$ and expand the iteration function g into a Taylor series about x=p:

$$g(x) = g(p) + g'(p)(x-p) + \dots + \frac{g^{\alpha-1}(p)}{(\alpha-1)!}(x-p)^{\alpha-1} + \frac{g^{\alpha}(\xi)}{(\alpha)!}(x-p)^{\alpha}$$

where ξ is between x and p.

Using the hypotheses regarding the value of $g^{(k)}(p)$ for $1 \le k \le \alpha - 1$ and letting $x = p_n$, the Taylor series expansion simplifies to

$$p_n + 1 - p = \frac{g^{(\alpha)}(\xi)}{\alpha!}(p_n - p)^{\alpha}$$

where ξ is now between p_n and p.

The definitions of fixed point iteration scheme and of a fixed point have been used to replace $g(p_n)$ with p_{n+1} and g(p) with p.

The definitions of fixed point iteration scheme and of a fixed point have been used to replace $g(p_n)$ with p_{n+1} and g(p) with p.

Finally, let $n \to \infty$. Then $p_n \to p$, forcing $\xi \to p$ also. Hence

$$\lim_{n\to\infty}\frac{\mid e_{n+1}\mid}{\mid e_{n}\mid^{\alpha}}=\frac{\mid g^{(\alpha)}(p)\mid}{\alpha!}$$

or $p_n \to p$ of order α .

Theorem (Aitken's Δ^2 method)

Suppose that

- $\{x_n\}$ is a sequence with $x_n \neq p$ for all $n \in \mathbb{N}$
- there is a constant $c \in \Re \setminus \{\mp 1\}$ and a sequece $\{\delta_n\}$ such that
 - $\lim_{n\to\infty} \delta_n = 0$
 - $x_{n+1} p = (c + \delta_n)(x_n p)$ for all $n \in \mathbb{N}$

Theorem (Aitken's Δ^2 method)

Suppose that

- $\{x_n\}$ is a sequence with $x_n \neq p$ for all $n \in \mathbb{N}$
- there is a constant $c \in \Re \setminus \{\mp 1\}$ and a sequece $\{\delta_n\}$ such that
 - $\lim_{n\to\infty} \delta_n = 0$
 - $x_{n+1} p = (c + \delta_n)(x_n p)$ for all $n \in \mathbb{N}$

Then

- $\{x_n\}$ converges to p iff |c| < 1
- if |c| < 1, then

$$y_n = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

is well-defined for all sufficiently large n.

Theorem (Aitken's Δ^2 method)

Suppose that

- $\{x_n\}$ is a sequence with $x_n \neq p$ for all $n \in \mathbb{N}$
- there is a constant $c \in \Re \setminus \{\mp 1\}$ and a sequece $\{\delta_n\}$ such that
 - $\lim_{n\to\infty} \delta_n = 0$
 - $x_{n+1} p = (c + \delta_n)(x_n p)$ for all $n \in \mathbb{N}$

Then

- $\{x_n\}$ converges to p iff |c| < 1
- if |c| < 1, then

$$y_n = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

is well-defined for all sufficiently large n.

Moreover $\{y_n\}$ converges to p faster than $\{x_n\}$ in the sense that

$$\lim_{n\to\infty}\frac{y_n-p}{x_n-p}=0$$

Let $e_n = x_n - p$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$
since we have

$$x_{n+1} - p = (c + \delta_n)(x_n - p)$$
 and $e_{n+1} = (c + \delta_n e_n)$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$
since we have

$$x_{n+1} - p = (c + \delta_n)(x_n - p)$$
 and $e_{n+1} = (c + \delta_n e_n)$
 $y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n)e_n e_n - (c + \delta_n)^2 e_n^2}{(c + \delta_{n+1})(c + \delta_n)e_n - 2(c + \delta_n)e_n + e_n}$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$
since we have
$$x_{n+1} - p = (c + \delta_n)(x_n - p) \text{ and } e_{n+1} = (c + \delta_n e_n)$$

$$y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n)e_n e_n - (c + \delta_n)^2 e_n^2}{(c + \delta_{n+1})(c + \delta_n)e_n - 2(c + \delta_n)e_n + e_n}$$

 $y_n - p = \frac{(c+\delta_{n+1})(c+\delta_n)-(c+\delta_n)^2}{(c+\delta_n)(c+\delta_n)-2(c+\delta_n)+1} (x_n - p)$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$
since we have
$$x_{n+1} - p = (c + \delta_n)(x_n - p) \text{ and } e_{n+1} = (c + \delta_n e_n)$$

$$y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n)e_n - (c + \delta_n)^2 e_n^2}{(c + \delta_{n+1})(c + \delta_n)e_n - 2(c + \delta_n)e_n + e_n}$$

$$y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n) - (c + \delta_n)^2}{(c + \delta_n) + 2(c + \delta_n)e_n + e_n}$$

 $y_n - p = \frac{(c+\delta_n)(\delta_{n+1}-\delta_n)}{(c-1)^+c(\delta_{n+1}+\delta_n)+\delta_n(\delta_{n+1}-2)}$

Let
$$e_n = x_n - p$$

$$y_n - p = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} - p$$

$$y_n - p = \frac{(e_{n+2} + p)(e_n + p) - (e_{n+1} + p)^2}{(e_{n+2} + p) - 2(e_{n+1} + p) + (e_n + p)}$$

$$y_n - p = \frac{e_{n+2}e_n - e_n^2}{e_{n+2} - 2e_{n+1} + e_n}$$
since we have
$$x_{n+1} - p = (c + \delta_n)(x_n - p) \text{ and } e_{n+1}$$

$$(c + \delta_{n+1})(c + \delta_n)e_n e_n - (c + \delta_n)^2 e^2$$

$$x_{n+1} - p = (c + \delta_n)(x_n - p) \text{ and } e_{n+1} = (c + \delta_n e_n)$$

$$y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n)e_n e_n - (c + \delta_n)^2 e_n^2}{(c + \delta_{n+1})(c + \delta_n)e_n - 2(c + \delta_n)e_n + e_n}$$

$$y_n - p = \frac{(c + \delta_{n+1})(c + \delta_n) - (c + \delta_n)^2}{(c + \delta_{n+1})(c + \delta_n) - 2(c + \delta_n) + 1} (x_n - p)$$

$$y_n - p = \frac{(c + \delta_n)(\delta_{n+1} - \delta_n)}{(c - 1) + c(\delta_n) + \delta_n + \delta_n + \delta_n + \delta_n + \delta_n}$$

Therefore
$$\lim_{n\to\infty} \frac{y_n-p}{x_n-p}=0$$

Steffensen's Method is a combination of fixed-point iteration and the Aitken's Δ^2 method:

Steffensen's Method is a combination of fixed-point iteration and the Aitken's Δ^2 method:

Suppose we have a fixed point iteration:

$$x_0, x_1 = g(x_0), x_2 = g(x_1), ...$$

Steffensen's Method is a combination of fixed-point iteration and the Aitken's Δ^2 method:

Suppose we have a fixed point iteration:

$$x_0, x_1 = g(x_0), x_2 = g(x_1), \dots$$

Once we have x_0, x_1 , and x_2 , we can compute

$$y_0 = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$$

At this point we "restart" the fixed point iteration with $x_0 = y_0$

Steffensen's Method is a combination of fixed-point iteration and the Aitken's Δ^2 method:

Suppose we have a fixed point iteration:

$$x_0, x_1 = g(x_0), x_2 = g(x_1), \dots$$

Once we have x_0, x_1 , and x_2 , we can compute

$$y_0 = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$$

At this point we "restart" the fixed point iteration with $x_0 = y_0$ e.g.

$$x_3 = y_0, x_4 = g(x_3), x_5 = g(x_4),$$

and compute

$$y_3 = x_3 - \frac{(x_4 - x_3)^2}{x_5 - 2x_4 + x_3}$$

Comparison with Fixed Point Iteration and Steffensen's Acceleration Method

EXAMPLE

Use the Fixed Point iteration method to find a solution to $f(x) = x^2 - 2x - 3$ using $x_0 = 0$, tolerance $= 10^{-1}$ and compare the approximations with those given by Steffensen's Acceleration method with $x_0 = 0$, tolerance $= 10^{-2}$.

Comparison with Fixed Point Iteration and Steffensen's Acceleration Method

EXAMPLE

Use the Fixed Point iteration method to find a solution to $f(x) = x^2 - 2x - 3$ using $x_0 = 0$, tolerance $= 10^{-1}$ and compare the approximations with those given by Steffensen's Acceleration method with $x_0 = 0$, tolerance $= 10^{-2}$.

 We can see that my MATLAB code while Fixed Point iteration method reaches the root by 788 iteration, Steffensen's Acceleration method reaches the root by only 3 iterations.