
IMGS 682 Spring 2016 - Homework 1

Linear Algebra, Classifiers, and PCA

John Doe - jdoe@rit.edu

Due: 9:00 PM EST, February 16, 2016

Instructions

Your homework submission must cite any references used (including articles, books, code,
websites, and personal communications). All solutions must be written in your own words,
and you must program the algorithms yourself. If you do work with others, you must list
the people you worked with. Submit your solutions as a PDF to the Dropbox Folder on
MyCourses.

Your homework solution must be prepared in LATEXand output to PDF format. I suggest
using http://overleaf.com or BaKoMa TEXto create your document.

Your programs must be written in either MATLAB or Python. The relevant code to the
problem should be in the PDF you turn in. If a problem involves programming, then
the code should be shown as part of the solution to that problem. One easy way to do
this in LATEXis to use the verbatim environment, i.e., \begin{verbatim} YOUR CODE
\end{verbatim}

If you have forgotten your linear algebra, you may find the Matrix Cookbook useful, which
can be readily found online. I like to do math using a program called MathType, which
can easily export equations to AMS LATEXso that you don’t have to actually write the
equations in LATEXdirectly: http://www.dessci.com/en/products/mathtype/

If told to implement an algorithm, don’t just call a toolbox.

1

http://overleaf.com
http://www.dessci.com/en/products/mathtype/

Problem 1 (2 points)

Let X be a 4 × 2 matrix, Y be a 2 × 2 matrix, and Z be a matrix such that X = ZY.
What is the size of Z?

Solution:
Given X is a 4x2 matrix

Y is a 2x2 matrix

And X = ZY

Then Z = XY−1

From the above equation and the given conditions we can say that Z will be a 4x2 ma-
trix.

Problem 2 (4 points)

Let

A =

(
5 −1
−1 5

)
.

Compute a formula for Ak, i.e., the matrix power operation defined as the matrix product
of k copies of A. Your answer must be a single matrix. Show the necessary steps of
your derivation.

Solution:
We know that, eigen decomposition of matrix A = Q × λ × Q-1

For finding A2 we can use eigen decomposition such as:

A2 = A×A
=Q×λ×Q1×Q×λ×Q-1

= λ2

Ak = λk

Problem 3

Suppose A is an n×n matrix with eigenvalue λ and the corresponding eigenvector v.

2

Part 1 (2 points)

If A is invertible, is v an eigenvector of A−1 If so, what will the new eigenvalue be? If not,
explain why not.

Solution:

A-1V = A-1 (1/λ× λ×V)
= 1/λ×A-1(λV)
= 1/λ×A-1(AV)

[SinceAV = λV]

= 1/λV

Part 2 (2 points)

Is 3v an eigenvector of A? If so, what will the eigenvalue be? If not, explain why not.

Solution:
PUT SOMETHING HERE

Problem 4

Part 1 (2 points)

Identify, with proof, the possible values of the determinant of an orthogonal matrix A ∈
Rn×n.

Solution:
PUT SOMETHING HERE

Part 2 (2 points)

Assume A is an invertible matrix. Prove that

det
(
A−1

)
=

1

det (A)
.

3

Solution:
we know that det(AB) = det(A) det(B)

also we know that

AA−1 = I

then,

det
(
AA−1

)
= det (I)

which is equal to 1 hence,

det
(
A−1

)
=

1

det (A)
.

Problem 5

Consider the following dataset of three points in R2: x1 = (−1,−1)T ,x2 = (0, 0)T ,x3 =
(1, 1)T .

Part 1 (2 points)

What is the first principal component when normalized to unit length? Write down the
vector.

Solution:
From the given data, we can find the covariance matrix as

C = XXT

C =

[
2 2
2 2

]
(1)

(2)

Solving for eigen values CV = LambdaV

we get two eigen values 0 and 4

first principal component will be the eigen vector corresponding to highest eigen value

4

PC =

[
0.707
0.707

]
(3)

(4)

Part 2 (2 points)

Use the vector you found in Part 1 to reduce the dimensionality of the data to one dimen-
sion. What are the new coordinates? What is the variance of the projected data?

Solution:
PUT SOMETHING HERE

Part 3 (2 points)

Compute the reconstruction error when the data is projected back to two dimensional
space.

Solution:
PUT SOMETHING HERE

Problem 6

In this problem, and several others, you will use the classic MNIST digit dataset. MNIST is
made up of 70,000 28×28 images of the handwritten digits 0–9, where 60,000 of the images
have been designated for use in training algorithms and 10,000 images have been designated
for testing/evaluating algorithms to see how well they work on data they have never seen
before (i.e., how well they generalize to new data). I have provided you with some helper
files to load the MNIST images into MATLAB, and similar functions can be readily written
(or found online) for Python. The images should be turned into floating point images, and
using single precision will make the code run faster and use less memory.

Go to this webpage http://yann.lecun.com/exdb/mnist/ and download these four files:

train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

5

http://yann.lecun.com/exdb/mnist/

After downloading them, you likely will need to unzip them and place them in a folder. Note
that if you used the MATLAB helper files, the images will be stored as 784-dimensional
vectors. You can use the ‘reshape’ command to reshape each one of these image vectors to
be 28× 28 to display it.

Important: mnist hard.mat is not used for this problem. It is used later on a different
problem.

Part 1 (2 Points)

Compute the mean and standard deviation of each digit in the training set, i.e., compute
the mean and standard deviation of all the zeros, all the ones, etc. Your answer should
display 20 images in which the top row has the image mean for each digit (i.e., the average
‘0’, the average ‘1’, etc.) and the second row has their corresponding variance. You should
provide your code as part of your answer (my solution was 10 lines of MATLAB).

Solution:

clear all
close all

images = loadMNISTImages('train-images-idx3-ubyte');
labels = loadMNISTLabels('train-labels-idx1-ubyte');

imagesR = reshape(images,28,28,60000);
figure;
for i = 0:9

M(:,:,i+1) = mean(imagesR(:,:,(labels==i)),3);
S(:,:,i+1) = std(imagesR(:,:,(labels==i)),0,3);

subplot(2,10,i+1); imshow(M(:,:,i+1));
subplot(2,10,i+11); imshow(S(:,:,i+1));

end

6

Part 2 (2 Points)

Principal Component Analysis (PCA) is typically explained using an eigendecomposition
of the d × d data covariance matrix C; however, due to finite-precision arithmetic on a
computer this algorithm for PCA can be numerically unstable. In practice, Singular Value
Decomposition (SVD) of the data itself (instead of the covariance matrix) is typically used,
i.e., X = UΣVT (see Appendix A.1 of Szeliski).

Given a data matrix X show mathematically how SVD can be used to compute the principal

7

components instead of using the eigendecomposition of C. Assume that X is mean zero
(i.e., centered). What would be the formula for the eigenvalues using the SVD algorithm
for PCA?

Hint: This problem requires you to use the formula for PCA using the covariance matrix
C to find a formula for PCA using SVD instead.

Solution:
Let X be NxD matrix

X = UΣVT (SVD of X)

C = 1
N−1XX

T (dxd covariance matrix)

Now, XTX = VΣUTUΣVT

XTX = VΣΣVT

XTX = VΣ2VT

C = V Σ2

N−1V
T

But C is symmetric, Hence C = VΛVT

Therefore, the eigen vectors of C are same as matrix V and eigen values of C can be derived
from

λi =
σ2
i

N−1

Part 3 (4 Points)

Write a function that implements PCA using SVD. Your algorithm should take a d ×m
matrix D and an integer k as input, where d is the dimensionality of the m data points,
and k is the number of principal components to retain. Do not assume that D is mean
zero. The function should return the top k principal components in a matrix and the d
dimensional mean.

Apply your function to the MNIST training data to reduce the dimensionality to 10 dimen-
sions. Display the first 10 principal components as images. When displaying the image,
contrast normalize it by constraining the values to be between 0 and 1 by subtracting the
minimum and then dividing by the maximum (this is called contrast stretching). (This
problem took about 13 lines of MATLAB code, including code to display the answer) So-
lution:
Funtion that implements PCA using SVD

8

%PC = principle components
%dM = mean of 'd' dimension vectors
%D = input matrix

function [PC,dM] = PCA SVD(D,k)
mn = mean(D,2);
m = size(D,2);
D = D - repmat(mn,1,m);
Y = D'/sqrt(m-1);
[u,S,PCno] = svd(Y);
PC = PCno(:,1:k);
dM = mean(mn);
end

images = loadMNISTImages('train-images-idx3-ubyte');%loading MNIST train images
imagesR = reshape(images,28,28,60000);%reshaping them
[PC,dM] = PCA SVD(images,10);%applying PCA SVD
redctn = PC'*images;%reducing the train data to 10 dimensions

imagesRnew = reshape(PC,28,28,10);%reshaping principle components to display as image
figure;
for i=1:10

subplot(2,5,i);
imshow(imagesRnew(:,:,i),[]);%displaying the images doing contrast stretching

end

9

Part 4 (4 points)

Plot the mean reconstruction error (squared distance between the original data and the
reconstructed data) as a function of the number of principal components, i.e., from 1 to
783. To do this efficiently, you should make a new version of your function for PCA to
in which k is varied. Use vectorization to ensure your code runs fast. Even if you use
vectorization, expect this script to take decent amount of time to run (30-90 minutes).
Make sure to label your plot’s axes.

10

Solution:

im train = loadMNISTImages('train-images-idx3-ubyte');
for i = 1:784;
PC = PCA SVD(im train,i);
recon = PC' * im train;
normal = recon * PC;
diff = sum(normal-im train)ˆ2;
diff = diff(:)/(60000 *784);
diff1(i) = diff;
end
figure();
plot('diff');

Problem 7 (4 points)

Implement k nearest neighbors using Euclidean distance and evaluate your algorithm by
“training” it on the 60,000 MNIST training images and evaluating it on the 10,000 testing
images. To do this, write a function that takes as input the test features (images), training
images, training labels, and k, and it should output predicted class labels for each test
feature vector (or image). For debugging purposes, I suggest you only use a small portion
of the training images (first 300 images) and that you use vectorization to ensure your code
is fast. You may find the file Compute L2 Distance Matrix useful for this. Note that with
vectorization you may need to manage memory to ensure your machine doesn’t run out of
resources.

What’s the percent accuracy with k equal to 1, 3, and 5 on the test images? What would
the accuracy be on the training images be when k = 1?

Solution:

function label= E D(train imgs,test imgs,train labels,k);

M = Compute L2 Distance Matrix(test,train);
[~, loc] = sort(M,2,'ascend');
class = train labels(loc);

label = class(:,1:k);
label = mode(label,2);

11

train imgs = loadMNISTImages('train-images.idx3-ubyte');
test imgs = loadMNISTImages('t10k-images.idx3-ubyte');
train labels = loadMNISTLabels('train-labels.idx1-ubyte');
test labels = loadMNISTLabels('t10k-labels.idx1-ubyte');

train = train imgs(:,1:60000);
test = test imgs (:,1:10000);
train labels = train labels(1:60000);
test labels = test labels(1:10000);

label= knnf(train imgs,test imgs,train labels,1);%for k = 1,3,5

match = test labels;
num = find(match == 0);
acc = size(num,1);

acc = acc/100;
disp(acc);

Problem 8

One of the major problems with nearest neighbor is that it doesn’t have a way to weigh the
importance of each dimension of the feature vector. It also is computationally expensive
because it requires comparing a vector of test features to every training data point. A
computationally faster approach are linear classifiers.

For a K category classification problem, a multi-class linear algorithm will use a collection
of K d-dimensional vector to classify a d dimensional vector of features (e.g., an image).
Formally, this prediction would be given by y = arg maxk wT

k x, where wk is the weight
vector for category k and x is the input vector of features.

Many algorithms have been devised to find the collection wk vectors, and they each perform
differently. We will look at some of the simplest methods.

Solution:

Part 1 (4 points)

A linear machine is a generalization of the Perceptron algorithm to multiple categories.
To train a linear machine, it sequentially classifies each vector in the training data xt,

12

i.e.,
yt = arg max

k
wT
k xt.

If the predicted category yt is not the correct category v, then the weights are updated as
follows:

wv ← wv + αxt

wyt ← wyt − αxt

where α is the learning rate. During training, the algorithm will review all of the training
data multiple times (each loop through the entire dataset is called an epoch).

Implement a linear machine and compute the accuracy on the training data and the test
data. Use a learning rate of α = 1 and use 2 epochs, and initialize all of your weight
vectors, i.e., all 10 of the wk vectors, to be all zeros. How do the results on the train and
test data compare to the nearest neighbor results from the previous problem? If there is a
significant difference, explain why this might be the case.

Solution:

train imgs = loadMNISTImages('train-images.idx3-ubyte');
test imgs = loadMNISTImages('t10k-images.idx3-ubyte');
train labels = loadMNISTLabels('train-labels.idx1-ubyte');
test labels = loadMNISTLabels('t10k-labels.idx1-ubyte');

w = zeros(784,10);
alpha = 1;

for epoch = 1:2
for i = 1:60000

im = train imgs(:,i);
curve = w' * im;
max pt = max(curve);
loc = find(curve == max pt,1);
actual = train labels(i)+1;

if loc == actual
% yay

else
w(:,loc) = w(:,loc) - alpha*im;
w(:,actual) = w(:,actual) + alpha*im;

end
end

end

loc1 = zeros(10000,1);

for i = 1:10000

13

im = test imgs(:,i);
curve = w' * im;
max pt = max(curve);
loc = find(curve == max pt,1);
loc1(i) = loc-1;

end

match = test labels - loc1;
num = find(match == 0);
acc = size(num,1);

acc = acc/100;
disp(acc);

Part 2 (4 points)

While linear machines are easy to program and understand, they are not regularized and
cannot output probabilities. One of the best regularized linear classifiers is the Support
Vector Machine (with a linear kernel), and one of the best methods for generating proba-
bilities is logistic regression.

Download LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) and train
a linear SVM model and a logistic regression model and compute the test accuracy for each
of the two models on the MNIST test data. Use options ’-s 0’ and ’-s 1’ Try tuning the
cost parameter.

Solution:

images = loadMNISTImages('train-images-idx3-ubyte');
labels = loadMNISTlabels('train-labels-idx3-ubyte');

ImTrain = loadMNISTImages('train-images-idx3-ubyte');
LbTrain = loadMNISTLabels('train-labels-idx1-ubyte');
ImTrainSparse=sparse(ImTrain');

model=train(MNISTLbTrain,MNISTImTrainSparse,'-s 1 -c 0.0125');

testimages = loadMNISTImages('t10k-images-idx3-ubyte');
testlabels = loadMNISTlabels('t10k-labels-idx1-ubyte');

ImTest = loadMNISTImages(filenameTestImages);

14

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

LbTest = loadMNISTLabels(filenameTestLabels);
MNISTImTestSparse=sparse(MNISTImTest');

[l,a,prob est]=predict(MNISTLbTest, MNISTImTestSparse, model);
%accuracy 91,53; accu

Problem 9 (2 points)

Discuss the limitations of a linear classifier. What are some ways in which these limitations
could be overcome?

Solution:
PUT SOMETHING HERE

Problem 10 (2 points)

Discuss the limitations of the naive nearest neighbor algorithm. What are some ways in
which these limitations could be overcome?

Solution:
PUT SOMETHING HERE

Problem 11

Download the file mnist hard.mat. Note that you can load MATLAB data files (*.mat files)
into Python using the function loadmat in SciPy. It should be clear from the variables in
the file which are the appropriate data and labels.

Solution:

Part 1 (2 points)

Train 1-nearest neighbor and report the accuracy on the test data.

Solution:
PUT SOMETHING HERE

15

Part 2 (2 points)

Apply PCA to the training data to reduce the dimensionality to 600, and then re-train
the 1-nearest neighbor. The PCA transformation should be found using the training data,
and then that transformation should be applied to both the train and test data. Report
the accuracy on the test data. If PCA helped, explain why you think it might have done
so.

Solution:
PUT SOMETHING HERE

Part 3 (2 points)

Why did accuracy differ significantly from when MNIST was used earlier? List two ways
in which you might be able to increase accuracy and explain why you think they will
help.

Solution:
PUT SOMETHING HERE

Part 4 (4 points)

Implement one of the ideas you came up with in the previous section and evaluate it on the
test data. How did it affect the accuracy on the test data? Make sure to provide whatever
code you wrote (which you should have been doing for all of the programming questions
anyway).

Solution:
PUT SOMETHING HERE

16

