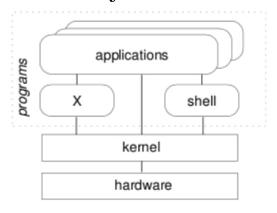
Chapter 1 Introduction


1.1 Operating Systems 1.1.1 Linux

- θ Linux is based on Unix
 - ω Unix Philosophy
 - ω Unix Commands
 - ω Unix Standards and Conventions

1.1.2 Unix

- θ There is some variation between Unix OS
 - ω Especially regarding system administration
 - ω Often Linux-specific things in these areas

1.2 Unix System Architecture

- θ The shell and the window environment are programs
- θ Programs only access to hardware is via the kernel

1.3 Tables

Tables are a little more difficult. TeX automatically calculates the width of the columns.

lattice	d	\mathbf{q}	Tmf/T
square	2	4	1.763
triangular	2	6	1.648
diamond	3	4	1.479
simple cubic	3	6	1.330
bcc	3	8	1.260
fcc	3	12	1.225

Table 1.1: A Sample Table

Chapter 2 Formulas and Equations 2.1 Aligning Equations

Follow these steps to be able to align equations:

- 1. In the preamble, include the package amsmath
- 2. In the code, use begin { align } and end { align }
- 3. Within the align clause, append the & before the = to align the equal signs

$$a = b$$
 (2.1)
 $a = d$ (2.2)
 $a = c$ (2.3)

2.2 Some Formulas

$$\frac{d}{dx}(\int_{o}^{x} f(u)du) = f(x)$$