CS 388R: Randomized Algorithms Fall 2015

Lecture 15 — October 28, 2015
Prof. Eric Price Scribe: Kunal Lad, Abhishek Sinha

1 Overview

In the last lecture, we looked at the all pairs shortest path problem. We saw the following;:

. An O(mm(n)log(n)) = O(n“*¢) algorithm which finds the shortest distance matrix for a
graph G by recursively finding the shortest distance matrix for the graph G?2.

. The problem of determining the successor matrix for tripartite graphs.

. O(n*) time algorithm for finding successor matrix in in a simple tripartite graph when there
is a unique successor for any 2 vertices.

. An O(mm(n)log®(n)) = O(n¥*€) randomized algorithm for the case when there are an un-
known number of successor vertices.

In this lecture, we will see

1. How to find the successor matrix for general graphs by reducing the problem to the tripartite

graph case.
. Problem of finding perfect matchings in bipartite graphs.
. Sufficient and necessary condition for the existence of perfect matchings in bipartite graphs.

. An algorithm for finding perfect matching for d-regular graphs when which is based on the
idea of Eulerian Tours and has a time complexity of O(nd).

. A Las Vegas algorithm for finding perfect matchings in general d regular graphs d = 2¥ which
has an expected time complexity of O(nlogn).

2 Calculating Successor Matrix for General Graphs

We now wish to find a successor matrix P for the all pairs shortest path problem in general graphs.

The successor matrix is defined in the following way,

P;j; =k if k € N(i) and k lies on a shortest path from i to j

N (i) denotes the neighborhood of i. In plain words, this means that k should be a neighbor of i

and it should lie on some shortest path from 7 to j.

We saw in the last lecture that finding the successor matrix for tripartite graphs is equivalent to
the problem of finding witnesses for the product of the boolean matrices A and B where A is the
adjacency matrix for the left half and B is the adjacency matrix for the right half. A witness for
a non-zero entry (AB),; of the product AB is an integer k € [n] such that A;, = 1 and By; = 1.
Intuitively speaking, k is a witness or proof of the fact that (AB)ij =1.

To find the successor matrix in general graphs, we thus need to construct the boolean matrices A
and B. The initial idea that was discussed in class was to construct a pair of boolean matrices for
each possible distance between 2 vertices and to find the successor matrix for each case separately.
More specifically, we iterate over all possible shortest distances [and in each step find the successors
for vertices separated by that distance by running the witness algorithm on the matrices A and
DU where DUV is the matrix whose entries are 1 for a pairs of vertices having a shortest
distance of [— 1 and 0 otherwise.

Lemma 1. Let DU~V be defined as the matriz such that D(l_l)ij =1 D;j=1—-1. Leti and j
be 2 vertices such that D;; = 1. Then P;; = k if and only if it is one of the witnesses for AD(lfl)ij.

Proof. First we prove the implies direction. By the definition of P, we have that P;; = k implies
A, = 1 and k lies on a shortest path from ¢ to j. Since D;; = [, we have that Dj; = — 1 which is
the same as D(lfl)ij = 1. Thus A;; = 1 and AD(lfl)ij which is the same as k being a witness for
AD(l_l)ij. The converse can also be proven in a similar way. O
This naive algorithm will have a time complexity of O(n'T%*+€). To improve the time complexity,
we made the observation that for any 2 vertices ¢ and j, if D;; = [then the shortest distance of
any neighbor of ¢ from j € {{ — 1,1,1 + 1}. Formally, we state the following lemma.

Lemma 2. Let i and j be two vertices such that D;j = l. Then for any k € N(i), Dy; €
{{-1,1,1+1}.

Proof. First we see that Dy; £ [— 1. If this were the case then going from i to £ to j will make
the distance of the path less than [which is a contradiction. Now we see that Dy; # [+ 1. If this
were the case, then we could go from k to ¢ to j for a total path length of [+ 1 between k and j
which is a contradiction. O

Hence, rather that looking at the actual distance of the neighbor of 7 to j, we can only look at the
distance modulo 3. We define the matrices M@, M® and M@ where M(k)ij =1& Dy =k
mod 3. Thus, to find P;; for 2 vertices having shortest distance [we only need to find a witness for
AMI=1 med 3,;. Formally, we prove the following lemma.

Lemma 3. Let i and j be two vertices such that D;; = 1. Then P;j = k if and only if k is one of
the witnesses for AM!~T mod i

Proof. If Pjj = k then A;; = 1 and Dy; = [— 1 which implies that Dy; = (I =1 mod 3) mod 3.
Thus k is one of the witnesses for AM!—1 meod 3Z-j. Conversely, let £ be one of the witnesses for
AMi=t med 3, By Lemma 2, we have that Dyj € {{—1,1,1 +1}. But Dy; can not be [or I +1
since they are not [—1 mod 3. Hence, Dy; = [— 1. This by Lemma 1, we have that P;; = k. [

We can thus run the witness algorithm with the matrices A and M®*) over all values of k from
0,1,2. To find the successor P;; where D;; = [, we just look at the (4,7) entry of the witness
matrix returned by run of the witness algorithm with matrices A and M!~1 ™43 Thus, in total
we will have to run the witness algorithm for 3 (constant) pairs of matrices and hence the time
complexity is the same as the time complexity of the witness algorithm which is O(n“*¢).

3 Matchings in Bipartite Graphs

Definition 4 (Bipartite Graph). A graph G = (V, E) is said to bipartite if the vertex set V can be
partitioned into 2 disjoint sets L and R so that any edge has one vertex in L and the other in R.

Definition 5 (Matching). Given, an undirected graph G = (V, E), a matching is a subset of edges
M C E that have no endpoint in common.

Definition 6 (Maximum Matching). Given, an undirected graph G = (V, E), a mazimum matching
M is a matching of maximum size. Thus for any other matching M', we have that |M| > |M’|.

The problem of finding maximum matchings in bipartite graphs is a well studied problem. We
describe some of the commonly known techniques for the same.

¢ Reduction to Max Flow Given an undirected bipartite graph G = (V, E) we construct a
network G’ = (V' E'), s,t, ¢ as follows (construction is along identical lines as [TR1])

— V=V Us,t where s and t are the 2 new vertices that we add.

— F’ contains a directed edge (s,u) for every u € L, a directed edge (u,v) for every e € E
where u € L and v € R and directed edge (v,t) for every v € R.

— The capacity c is defined as ¢(e) = 1 for every e in E'.

We compute a max flow on the above network ensuring that every edge has an integral flow i.e.
either 0 or 1. This is always possible since the original capacities are integral. Given the maxi-
mum flow, we return the maximum matching as the following set (u,v) € E such thatf(u,v) =
It is easy to see that the size of the returned matching is the same as the size of the maxi-
mum flow. The proof of why this is a maximum matching follows from the fact that for any
matching of size k in the bipartite graph, there exists a flow of value k in the network G’ and
vice versa.

The maximum flow can be computed using several algorithms, the most popular one being the
Ford Fulkerson algorithm. Ford Fulkerson by iteratively building larger s — ¢ flows by finding
an augmenting path between s and ¢. After constructing an augmenting path, we push a flow
w along it where w is the minimum of the capacity of all edges along the path. We also modify
the graph by adding a reverse or back edge of capacity w for every edge in the augmenting
path. Intuitively, by adding these reverse edges, we are allowing a new augmenting path
to push back some of the flow added in the current step. The time complexity of the Ford
Fulkerson Algorithm is O(mc) where ¢ is the total outgoing capacity from the source. In the
case of a bipartite graph, we can see that this is O(|V||E|).

e Hungarian Algorithm This is used in those cases where each edge of the bipartite graph
has a weight or a cost associated with it. As an example, we may want to match students to
rooms and each student may have a certain maximum cost s/he is willing to pay for the room.
Using the Hungarian Algorithm, we can find a minimum cost matching in time O(|V|?) time.

e Edmond-Karp Algorithm This algorithm is also based on the idea of augmenting paths
and has a time complexity is O(|E|\/(|V]).

Thus, we can see that for dense graphs none of these algorithms are asymptotically better that
O(|V|?>?). Later on in the lecture, we describe a randomized algorithm for finding a maximum
matching in regular bipartite graphs (which is a perfect matching) which has an expected time
complexity of O(|V]log(|V])).

3.1 Perfect Matching in Bipartite Graphs

Definition 7 (Perfect Matching). Given, an bipartite graph G = (V, E) , with the bipartition
V = LU R where |L| = |R| = n, a perfect matching is a mazimum matching of size n.

We now prove Hall’s Theorem which gives both sufficient and necessary conditions for the existence
of a perfect matching in a bipartite graph.

Theorem 8. (Hall’s Theorem) A bipartite graph G = (V, E) , with the bipartition V = LUR where
|L| = |R| = n, has a perfect matching if and only if for every subset A C L , |N(A)| > |A| where
N(A) denotes the neighborhood of A.

Proof. We first prove the necessary condition. Consider any subset A C L. In the perfect matching,
each vertex in A will be connected to a distinct vertex of R. Hence |[N(A)| > |A|.

We now prove the sufficient condition. We present the proof along identical lines as [TR2] . We
prove it by contrapositive i.e. given the fact that there does not exist a perfect matching, we try
to construct a set A C L such that |[N(A)| < |A|. We analyze a maximum (integral) flow in the
network G’ corresponding to the bipartite graph G which by assumption must have a value less
than n. Hence, by the max-flow min-cut theorem an s — ¢ min-cut (.5, S¢) of the graph also has a
capacity less than n. Let Ly = SNL, R =SNR, Ly = 5°NL and Ry = S°N R. Since all edges
have unit capacity and we are looking at integral flows, the capacity of the cut will simply be the
number of edges going from S to S¢. Hence.

capacity(S) = |La| + |R1| + edges(L1, Ra)
=n — |L1| + |R1| + edges(L1, Ry)

But we know that capacity(S) <n — 1. Hence

n — |Li| + |Ri| + edges(Ly, Rp) < n —1 (2)

This implies that
1+ [Ry| + edges(L1, Ry) < |Li| (3)

We can easily see that the quantity |Ri| + edges(L1, R2) is an upper bound for |[N(L;)| since we
are overcounting by assuming that each edge from L; to Rs has a different end point in Rs. Hence
we have the result that

1+ |N(L)| <[] < [N(L1)[< [La] (4)

Thus L4 is a set that we were looking for and this completes the proof of the sufficient condition. [

Using Hall’s Theorem, we now show that every d regular bipartite graph has a perfect matching.
Theorem 9. FEvery d regular bipartite graph has a perfect matching.

Proof. Consider any set A C L. We try to count the number of edges from A to N(A) in 2 different
ways. This number is exactly equal to |A|d since each vertex A contributes d outgoing edges. We
also have that the number of incoming edges on N(A) is at max d/N(A). This is an upper bound

on the number of edges from A to N(A) since all the incoming edges on the set N(A) need not be
outgoing from A. Hence, we have that

d|A] < d|N(A)| & [A] < [N(4)] ()

Hence, by Hall’s theorem, the graph must have a perfect matching. O

3.2 Matchings in d-regular Graphs for d = 2F
In the next section, we describe an algorithm for finding perfect matchings in d regular graphs

where d = 2F.

Definition 10 (Euler Tour). An Euler tour in an undirected graph is defined as a tour that traverses
each edge of the graph exactly once.

Neccessary and Sufficient Condition: An undirected graph has an Euler Tour iff every vertex has
even degree.

Now for a d-regular graph with d = 2¥ we can find a matching by following recursive algorithm:

e d=1: Then it is a perfect matching precisely.

e d =2 : In this case graph corresponds to a cycle. Choosing an orientation of the cycle gives
us a matching.

e d = 2% : In this case we can get a matching by following procedure:

— Walk along the edges and find an Eulerian Tour of G in O(m) time.
— Orient the edges by the direction used in the walk.
— Consider all forward edges, these form a regular graph with degree d/2 = 2¥~!. Thus
running time is given by:
T(m)=0(m)+T(m/2)
= O(m)

3.3 Matchings in d-regular Bipartite Graphs

In this section we look at a randomized algorithm proposed by Goel Kapralov and Khanna for
finding matchings d-regular bipartite graphs where d may not be a perfect power of 2.

Intuition: There are large number of Bipartite Matchings on d-regular graphs.

Basic Idea: Basic idea of the algorithm is to use random walks to find a random walk from
an unmatched vertex in one partition to an unmatched vertex in another partition. Use this to
construct an augmenting path in Ford-Fulkerson algorithm.

Note: This algorithm assumes that we have G in adjacency array format so that we can sample
edges for random walk in expected constant time.

Lemma 11. Let k be the number of unmatched vertices after we have found a partial matching.
Then:

E[Time for random walk from s to t] = O(n/k)
Proof. Let X and Y be the partitions of given graph G and let M be the partial matching of vertices
in X and Y. We define the following wrt to M:

X, ¢ Set of matched vertices in X.

Y, : Set of matched vertices in Y.

X, : Set of matched unvertices in X.

Y., : Set of matched unvertices in Y.

M(z) =y and M(y) =z if x € X is matched to y € Y under M

Let b(v) = E[#Back edges in random walk starting at v, ending at t]
Our goal is to prove b(s) < n/k

By above definition we have the following:

1.IfyeY

2. Ifze X

o if r € X, then

e if x € X, then
b(z) =1/(d—1) > b(y)
ye{N(z)—M(z)}
— d-Dba)= 3 by)
ye{N(z)—M(z)}

= (d-1bx) = -b(M() + Y bly)

ve{N ()}
= (d—1b(z) =—(1+bx)+ Y by
ye{N (=)}
= db(x)=-1+ > by)
ye{N(x)}

Thus from 2 we get:

dd ba)=—(n—k+ > by

rzeX (z,y)eE

=—(n—k) —l—dzb(y)
Yy
=—(n—k)+d(M[+ Y b(x))

r€Xm

The above lemma implies:
n

E[Running Time to find a matching] < Z(n/k) =nH, Snlogn
1

~

References

[TR1] Trevisan, Luca. Section 14.1, Combinatorial Optimization: Exact and Approximate Algo-
rithms. Standford University (2011)

[TR2| Trevisan, Luca. Section 14.2, Combinatorial Optimization: Exact and Approximate Algo-
rithms. Standford University (2011)

[MR]| Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms. Cambridge University Press,
0-521-47465-5, 1995.

