$\overline{\bar{\prime}}$ RING RING
 Delhi Technological University DELHI

Submitted By : YOGESH MALIK

(1)

RING

- DEFINITION : -

A non-empty set R, equipped with two binary operations called addition and multiplication denoted by (+) and (.) is said to form a ring if the following properties are satisfied :

Properties under Addition :

1. R is closed with respect to addition
i.e., $a, b \in R$, then $a+b \in R$
2. Addition is associative
i.e., $a+(b+c)=(a+b)+c \forall a, b, c \in R$
3. Addition is commutative
i.e., $a+b=b+a \forall a, b \in R$

ון

4. Existence of additive identity
i.e., there exist an additive identity in R denoted by in R such that
$0+a=a=a+0 \forall a \in R$
5. Existence of additive inverse
i.e., to each element a in R, there exists an element $-a$ in R such that
$-a+a=0=a+(-a)$
Properties under Multiplication :
6. R is closed with respect to multiplication
i.e., if $a, b \in R$, then $a . b \in R$
7. Multiplication is associative
i.e., $a .(b . c)=(a . b) . c \forall a, b, c \in R$
8. Multiplication is distributive with respect to addition i.e., $\forall a, b, c \in R, a .(b+c)=a . b+a . c$ [Left distributive law]

And $(b+c) \cdot a=b \cdot a+c \cdot a[$ Right distributive law]

t_{1}

- REMARK:

Any algebraic structure $(R,+,$.$) is called a ring if (R,+)$ is an abelian group and R is closed, associative with respect to multiplication and multiplication is distributive with respect to addition.

t_{1}

* TYPES OF RING

1. COMMUTATIVE RING :

A ring in which $a . b=b . a \forall a, b \in R$ is called commutative ring.
2. RING WITH UNITY :

If in a ring, there exist an element denoted by 1 such that $1 . a=a=a .1$
$\forall a \in R$ is called a ring with unity element.
The element $1 \in R$ is called the unit element of the ring.
Thus, if R satisfies the all eight properties of ring and also have multiplicative identity, then we define R as ring with identity. 3. NULL RING OR ZERO RING :

The set R consisting of a single element 0 with two binary operations defined by $0+0=0$ is a ring and is called null ring or zero ring.

x_{1}

Eg. Prove that the set Z of all integers is a ring with respect to addition and multiplication of integers.
Proof:
. Properties under Addition :

1. Closure property: As sum of two integers is also an integer,
Z is closed with respect to addition of integers .
2. Associativity: As addition of integers is also an associative composition
$\therefore, a+(b+c)=(a+b)+c \forall a, b, c \in Z$
3. Existence of additive identity: For $0 \in Z, 0+a=a=a+0 \forall \mathbf{a} \in Z$.
$\therefore, 0$ is additive identity.
4. Existence of additive inverse: For each $a \in Z$ there exist $-a \in Z$ such that $a+(-a)=0=(-a)+a$, where 0 is identity element.

x_{1}

5. Commutative property :
$a+b=b+a \forall a, b \in Z$
.Properties under Multiplication:
6. Closure property with respect to multiplication: As product of two integers is also an integer
$a . b \in Z \forall a, b \in Z$
7. Multiplication is associative :
$a .(b . c)=(a . b) . c \forall a, b, c \in Z$
8. Multiplication is distributive with respect to addition:
$\forall a, b, c \in Z, a .(b+c)=a . b+a . c$
And $(b+c) \cdot a=b \cdot a+c \cdot a$
Hence, Z is a ring with respect to addition and multiplication of integers.

ון إ

- Note:

1. As $1 . a=a .1=a, \forall a \in Z$,
$\therefore 1$ is a multiplicative identity of Z.
2. As $a . b=b . a, \forall a, b \in Z$,
\therefore multiplication of integers is commutative.
Hence, Z is a commutative ring with unity.
\circledast Remark :
A ring R is said to be Boolean ring if $x^{2}=x \forall x \in R$.

l|lı

Eg. Prove that a ring R in which $x^{2}=x \forall x \in R$, must be commutative. OR
Show that a Boolean ring is commutative.

Proof:

Let $x, y \in R \Rightarrow x+y \in R$
By give condition, $(x+y)^{2}=x+y \forall x, y \in R$
$\Rightarrow(x+y)(x+y)=x+y$
$\Rightarrow x \cdot x+x \cdot y+y \cdot x+y \cdot y=x+y$
$x^{2}+x \cdot y+y \cdot x+y^{2}=x+y$
$\Rightarrow x+x . y+y \cdot x+y=x+y\left[\because x^{2}=x, y^{2}=y\right]$
$\Rightarrow x \cdot y+y \cdot x=0$
$\Rightarrow x \cdot y=-(y \cdot x)$
$x \cdot y=(-y \cdot x)^{2}$

ון

Again $\forall y \in R,(y+y)^{2}=y+y$ $\Rightarrow(y+y)(y+y)=y+y$ $\Rightarrow y . y+y \cdot y+y . y+y . y=y+y$
$y^{2}+y^{2}+y^{2}+y^{2}=y+y$
$\Rightarrow y+y+y+y=y+y$
$\Rightarrow y+y=0$
$\Rightarrow y=-y$
\therefore from (1), $x . y=(y x)^{2}$
$x . y=y x$
Thus $x . y=y . x \forall x, y \in R$
Hence, R must be commutative.

® RINGS WITH OR WITHOUT ZERO DIVISORS:

A ring $(R,+,$.$) is said to be without zero divisors if for all a, b$ belong to $\mathrm{R} a \cdot b=0$ that implies either $a=0$ or $b=0$
On the other hand, if in a ring R there exists non zero elements a and b such that $a . b=0$, then R is said to be a ring with zero divisors.
Eg.

1. Sets Z, R, C, and Q are without zero divisors rings.
2. The ring ($0,1,2,3,4,5,+6, \times 6$) is a ring with zero divisors.

x_{1}

Eg. Prove that the set $\{0,1,2,3,4,5\}$ with addition modulo 6 and multiplication modulo 6 as composition is a ring with zero divisors.

Proof :

Let $R=\{0,1,2,3,4,5\}$
Properties under addition :

1. Closure law :

As all the entries in the addition composition table are elements of set R is closed w.r.t. addition modulo 6.
2. Associative law :

The composition +6 is associative. If a, b, c are any three elements of R then
$a+6(b+6 c)=a+6(b+c)$
$a+6(b+6 c)=$ least non-negative remainder when $a+(b+c)$ is divided by 6

ון

$a+6(b+6 c)=$ least non-negative remainder when $(a+b)+c$ is divided by 6
$a+6(b+6 c)=(a+b)+6 c$
$a+6(b+6 c)=(a+6 b)+6 c$
3. Existence of identity :

As $0+6 a=a=a+60 \forall a \in R$
4. Existence of inverse :

From the table, we see that the inverse of $\{0,1,2,3,4,5\}$ are $\{0,5,4,3,2,1\}$ respectively. Hence , additive inverse exists.
5. Commutative law :

For all $a, b \in R$, we have $a+6 b=b+6 a$

x_{1}

Properties under multiplication :
6. Closure law for multiplication :

All the entries in the multiplication composition table are element of set R, therefore R is closed with respect to multiplication modulo 6 .
7. Associative law for multiplication :

Let $a, b, c \in R$
$\therefore a \times 6(b \times 6 c)=a \times 6(b c)$
$a \times 6(b \times 6 c)=$ least non - negative remainder when $a(b c)$ is divided by
6.
$a \times 6(b \times 6 c) 4=$ least non negative remainder when $(a b) c$ is divided by 6
$a \times 6(b \times 6 c)=a b \times 6 c$
$a \times 6(b \times 6 c)=(a \times 6 b) \times 6 c$

x_{1}

8. Distribution laws :

If a, b, c be any three elements of R, then
$a \times 6(b+6 c)=a \times 6(b+c)$
$a \times 6(b+6 c)=$ least non negative remainder when $a(b+c)$ is divided by 6
$a \times 6(b+6 c)=$ least non - negative remainder when $a b+a c$ is divided by 6
$a \times 6(b+6 c)=a b+6 a c)$
$a \times 6(b+6 c)=a \times 6(b+6 c)$
similarly , $(b+6 c) \times 6 a=(b \times 6 a)+6(c \times 6 a)$
Hence, R is a ring with respect to given compositions.

ון إ

As $(R,+6, \times 6)$ is ring ,
Now for $2,3 \mathrm{R}, 2 \times 3=0$
i.e., product of two non zero element is equal to the zero element of the ring .
Hence, R is a ring with zero divisors.

