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Abstract

For many years we have talked about “well behaved sets”, referring to those to

which the methods and ideas of traditional calculus have applied easily. Other sets

which have not fallen into such a category have been called “badly behaved” and seen

as not worthy of study (Falconer, K. J. (1990): xiii). The field of fractal geometry

has given us an insight into these sets. Their applications have been as far reaching

as everything from financial markets to the description of clouds. Here we give a brief

introduction to the field of fractal geometry. We move on to consider the dimension

of fractals. We will see that there are some problems in calculating the dimension of

fractals. Why many of them seem to have dimension in-between integers. We will then

move to define the concept of the Minkowski dimension, to see try to define a concept

of definition. We will examine the properties of this concept and examine what we

in general seek from a concept of dimension. We will then see another definition of

dimension, and see how these two relate to what we expect of a concept of definition.

Lastly we will ask when, if ever, these two concepts are equal and prove Hutchinsons’

theorem. The assumed reader would have had equation in the field of analysis, calculus

and algebra. All of this assumed knowledge may be found in the following books,

“Fundamentals of mathematical analysis” (Haggarty, R. , 1993) for analysis, “Modern

Engineering Mathematics” (James, G. , 2010) for calculus and “Schaum’s Outline of

Abstract Algebra” (Jaisingh, L. R. , 2003) for algebra.
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1 Introduction

For many years the sets to which calculus has been easily applicable have been described

as “well behaved sets” (Falconer, K. J. (1990): xiii). The study of these sets has changed

that way of thinking in one swift movement. The reason we have been primarily concerned

with these sets is due to their incredible ability to model the world around us. Recent

developments have found that these “badly behaved sets” can be applied to the world

yielding better results in some cases than our previous models. Some of these “Badly

behaved” sets are known as fractals. “At the present stage of development of science

and mathematics, the idea of a fractal is most useful as a broad concept” (Barnsley, M.

(1988): 35). Hence we shall not define a fractal rigorously but rather by a collection of

interesting sets, pictures, examples and concepts which, in broad principle, embody the

general properties that we expect from a fractal.

This field was first explored in detail by Benoit B. Mandlebrot. Since then many have

seen the ability of fractals to describe the world around us “Mandelbrots fame rests on this

founding of fractal geometry and showing how it applies to many fields.” (Hudson, R. L.

(2008): xx). Further far from just being applicable to describe the world, it can even be

better than the traditional geometric models, “His 1962 that prices [in financial markets]

vary far more than the standard model allows... is now widely accepted by econometri-

cians” (Hudson, R. L. (2008): xxiv). A brief warning to the reader is included in Michael

Barnsely’s book entitled “Fractals Everywhere” “[If you proceed with study of fractals] you

risk losing your childhood vision of clouds, forests, galaxies, leaves, feathers, flowers, rocks,

mountains torrents of water, carpets, bricks and much else.” (Barnsley, M. (1988): 1). This

quote truly shows how versatile the theory of fractals is in describing natural objects.

Although some of the sets we will study may only satisfy some of the general properties

we will observe in our board definition of a fractal, we still refer to them as fractals. There

are two properties that we mainly consider. These are self-similarity, meaning that if

we enlarge the set it looks the same as it began, either graphically or pictorially. Also

we consider the idea of fine structure. One may visualize this as the set being detailed

regardless of how much we may “zoom in” on it. We will give much more rigorous definitions

of these concepts as we proceed.

One of the most interesting aspects of fractals is their ability to have fractional dimension.

Insofar the reader will have encountered and be comfortable with referring to dimension as

an integer. Here we will endeavor to see why the non-integer dimension of fractals not only

makes sense but how it arises. Beginning with the study of the Cantor set, we will consider

the dimension of this set. Then move to generalize the concept of dimension and consider

the various different dimensions that exist for calculating dimension. Here our primary

point of study will be the Minkowski dimensions of fractals. We will see the properties of

this dimension, explore the properties it possesses in terms of what we generally expect from

dimension, compare its properties to another definition of dimension and finally move on to

see under what conditions these two concepts are equal, finally will proving Hutchinson’s

MA3PR 1 Prof. M. Levitin
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theorem to answer this question.

2 Preliminaries

We here introduce or remind the reader of a few concepts that will be key in our discussion

of fractals. All of the ideas that are discussed here that refer to metric spaces, openness or

closure points may be found in any good book on basic topology. The reader is referred

to “Introduction to Metric and topological spaces” (Sutherland, W. A. , 2009) for more

information on this topic.

Definition 2.1. A set X is said to be countable if there exists an injective function f :

X → N.

Definition 2.2. A function f : X → y is called a bi-Lipschitz function if there exists 2

constants c1, c2, with 0 < c1 ≤ c2 <∞, such that

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|

The above two definitions are mainly reminders; it is assumed the reader is familiar with

Lipschitz functions. The above definition is merely an extension of that idea. This definition

may be found in “Fractal geometry” (Falconer, K. J. (1990): 8).

Definition 2.3. Let X be a set. A metric (or distance) on X is a function d : X×X → R
with the following properties:

(M1) d(x, y) ≥ 0 ∀x, y ∈ X & d(x, y) = 0⇔ x = y

(M2) d(x, y) = d(y, x) ∀x, y ∈ X

(M3) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.

A metric space is a pair (X, d) where X is a set and d is a metric on X.

Note:. In general for the rest of this paper we will use X to denote a metric space and d

will be mainly used as a general metric, unless otherwise stated. If we are referring to a

subset of Rn then we will be using F .

Definition 2.4. The Euclidian metric is defined to be if (x1, x2, · · · , xn) = x ∈ Rn and

(y1, y2, · · · , yn) = y ∈ Rn we define the Euclidean metric (or Euclidean distance), denoted

|x− y|, to be the metric |x− y| : Rn × Rn → R where,

|x− y| =

√√√√ n∑
i=1

(xi − yi)2.

Note:. When using the Euclidian metric we will be referring to the metric space (Rn, | · |).
Unless otherwise stated.

MA3PR 2 Prof. M. Levitin
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Definition 2.5. Let (X, d) be a metric space, (xn)n≥1 be a sequence in X and let x0 ∈ X.

We say that (xn)n≥1 converges to x0 in (X, d) as n → ∞, and write xn → x0 in (X, d)

as n→∞, if

∀ε > 0∃N ∈ N such that n ≥ N ⇒ d(xn, x0) < ε

The above notion is merely a generalization of continuity as the reader currently understands

it. It is worth noting that if we choose d to be the Euclidian metric and X = R then see

that the above definition is precisely that of continuity of real analysis.

Definition 2.6. Let (X, d) be a metric space. We say that X is complete if every Cauchy

sequence in X converges in X.

Definition 2.7. If (X, d) is a metric space with X 6= φ. We define the diameter of A ⊂ X
to be sup{d(x, y) : x, y ∈ A}. We denote this quantity by diam(A).

In the above we are examining the maximum distance between any two points in the set.

Considering a circle, we may see how this will yield its diameter and hence the name.

Moreover this generalized definition is very good for all purposes.

Definition 2.8. Let (X, d) be a metric space. For and x0 ∈ X and r > 0, we define the

following sets:

Br(x0) = {x ∈ X : d(x0, x) < r} the open ball of center x0 and radius r,

Br(x0) = {x ∈ X : d(x0, x) ≤ r} the closed ball of center x0 and radius r .

Definition 2.9. A set A ⊂ X is said to be open if

∀x ∈ A ∃ Br(x0) ⊂ X.

Further we call a set closed if the compliment of A in X, denoted Ac, is open.

It is worth noting that openness and closedness are not exhaustive. That is if a set is not

open that does not imply it is closed and the converse is true. Moreover if a set is closed

that does not mean it is not open. A very quick check will show that R is both open and

closed.

Definition 2.10. A point x ∈ X is said to be a closure point of A if, for every r > 0,

one has that Br(x) ∩ A 6= φ. The set of all closure points of A is called the closure of A,

and is denote A.

Definition 2.11. We define the concepts of limit inferior and limit superior. These

are respectively,

lim
x→0

f(x) = lim
ε→0

(sup{f(x) : x ∈ E ∩Bε(a)− {a}}) (1)

lim
x→a

f(x) = lim
ε→0

(inf{f(x) : x ∈ E ∩Bε(a)− {a}}). (2)

If the values in (1) and (2) are equal then lim f(x) exists and is the common value of the

two.

MA3PR 3 Prof. M. Levitin
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Figure 1: The middle third cantor set

In this definition we are seeking to maximize or minimize the sequence and then take its

limit. These concepts are, in general, not equal as we will see later on.

3 Fractal Sets

3.1 The middle third Cantor set

Insofar we have discussed the notation of a fractal set and a few of the properties we expect

them to have. Now we seek to give some substance to the previous ideas by discussing

some of the most famous examples of fractal sets in general. Unquestionably one of the

most famous fractal sets is the middle third Cantor set. The middle third Cantor set is

generated by taking the unit interval [0, 1], which we denote C0. We then split it into thirds

and remove the middle third, giving 2 new intervals of width 1
3 ; these intervals are

[
0, 13
]

and
[
2
3 , 1
]
. We call this new set C1. We repeat this process to the two new intervals. This

gives us 4 intervals, each of width 1
9 , which are

[
0, 19
]
,
[
2
9 ,

1
3

]
,
[
2
3 ,

7
9

]
and

[
8
9 , 1
]
. We call this

set C2. We repeat this process n times to obtain Cn. The middle third Cantor set is the

limit of Cn and n → ∞ (Falconer, K. J., 1990). A diagrammatical representation can be

seen in (Figure 1).

We see here that this set is self-similar due to the way we generate the set we note that C1

is merely 2 copies of C0 scaled by 1
3 . Similarly C3 is merely 2 copies of C2 scaled by 1

3 . The

middle third Cantor set, C, may be easily seen to be C = ∩∞n=1Cn. Note that C1 = C0 ∩C1

and C2 = C0 ∩ C1 ∩ C2. Hence, substituting this definition into C = limn→∞Cn we obtain

C = ∩∞n=1Cn. Indeed one may see that the middle third Cantor set merely consists of a

set of single points. However no matter how far one may “zoom in” on a point the point is

always still there. As it is simply a singularity, in a number line. So in this sense it may be

considered as having fine structure.

3.2 The von Koch curve

Another very famous fractal is the von Koch curve. This begins by taking an interval of unit

length. We then split the interval into thirds. In the middle third we insert an equilateral

MA3PR 4 Prof. M. Levitin
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triangle with no base (Falconer, K. J., 1990). We then repeat this process, infinitely. A

graphic representation of this may be seen in (Figure: 2). The figure was generated using

the Maple code written by Le Stang, A. (2013). We notice here that each of the lines in the

first iteration looks like the starting intervals. The two end pieces are scaled by 1
3 and the

two middle pieces are scaled by 1
3 and rotated appropriately. Again we see here the essence

of self-similarity as discussed in the introduction. Here we can see that Von Koch curve

must have fine detail as if a single side of the curve was straight the process would have

been applied to it. Moreover we see here why this may be thought of as a “badly behaved”.

As there are no straight lines in the von Koch curve, it is nowhere differentiable, hence is

very difficult to describe with traditional geometry. The reader is invited to see how this is

constructed by observing Matlab code written by (Durrani, S. , 2014).

In (Figure: 2) we see the first, second third iteration of the Von Koch curve, denoted

K1,K2,K3 respectively, as well as the final product.

Figure 2: The Von Koch curve

3.3 The general properties of fractals

We see here some of the main properties that are shared by these two fractals. Both are

very difficult to describe using traditional geometry, both have fine structure, both are self-

similar and both are generated using a relatively simple process (in the case of the Von

Koch curve and middle third Cantor set a recursive process). These are probably the most

common properties shared by most fractals. Hence, in general, when we refer to a set A as

a fractal it will have all or most of the following properties,

(i) A has infinite detail, fine structure

(ii) A is either very difficult or impossible to describe with traditional geometry

(iii) A will be self-similar in some sense or another

(iv) A will generally be defined in a very easy way. Either by an iterative process or

normally.

MA3PR 5 Prof. M. Levitin



Part 3 Project (Project Report) D. Edwards

(a) The δ−parallel body of a single point (b) The δ−parallel body of a line

Figure 3: Two simple δ−parallel bodies

While the above list is not a rigorous definition it will help us in understanding what a

fractal is and what we will have in mind when considering a fractal (Falconer, K. J., 1990).

3.4 Dimensions of the von Koch curve and middle third Cantor set

In the introduction we hinted that the dimension of fractals could be fractional. We now

try to give some justification to that statement. Consider the middle third Cantor set, as

it is merely the collection of points having no length, but due to its fine structure near each

point there are more points near any given point. Hence, although each point has no length

there is always another point next to it much like an interval. So it seems to make sense

that the dimension would lie somewhere between zero and one.

Again applying the same logic to the von Koch curve, this clearly has length 4k

3k
at the kth

iteration meaning it has infinite length, but does not have any area. Hence, it again seems

to make sense that the dimension would lie between one and two. Indeed for both of these

fractals the bounds we have placed on them are reasonable, which we will see this when we

calculate their exact dimension later on.

4 Minkowski And Box Dimension

4.1 δ−Parallel Bodies

One of the most commonly used definitions of fractal dimension is the Minkowski (or box

dimension). The first concept needed to introduce the concept of the Minkowski is that of

a δ-parallel body (Falconer, K. J., 1990). We define this as follows.

Definition 4.1. Let (X, d) be a metric space. We define the δ−parallel body of a set A ⊂ X,

denoted Aδ, to be the set,

Aδ = {x ∈ X : d(x, y) ≤ δ for some y ∈ A}.

We will see that δ−parallel bodies have an intrinsic relationship with the concept of dimen-

sions as we currently know it. We will be talking about the “lowest power of δ”. We denote,

MA3PR 6 Prof. M. Levitin
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f(x) ∼ φ(x) if f(x)
φ(x) → 1. In a function of δ then φ(δ) is clearly going to be the lowest power

of δ. Let A = {a}, X = R2, and d be the Euclidean metric. Consider the δ−parallel body

of this set. This can be seen in (Figure : 3a). Now consider the volume of the area bounded

by the red line in (Figure : 3a). This is obviously a circle by our definition of a δ−parallel

body. We may easily compute the volume of this, which we denote volAδ which is known

to be volAδ = πδ2 ∼ πδ2−0.

We can also consider the δ−parallel body around an interval. In this case let B = [a, b] for

some a, b ∈ R with a < b, X = R2, and d as before. Then we may form the δ−parallel body,

Aδ. This may be seen in (Figure 3b). The volume of this, denoted as above, is easily seen

to be volBδ = 2δ(b− a) + πδ2 ∼ 2(b− a)δ2−1.

One may also find the δ−parallel body of a circular line known as the one dimensional torus.

In this case we consider the unit circle C = {x2 +y2 = 1 : x, y ∈ R}. We now have Cδ as the

area between 2 circles enclosing our original line, this may be seen in (Figure: 4a) and is the

area enclosed by the red and yellow line with the blue circle being the set we are considering.

It is also apparent one would have that volCδ = π(1 + δ)2 − π(1 − δ)2 ∼ 4πδ2−1. We may

consider a 2 dimensional unit circle centered at the origin, here we have D = {x2 + y2 ≤ 1 :

x, y ∈ R}. This may be seen in in (Figure: 4b). It is worth noting an animated version of

this plot is available see (Edwards, D. , 2014). Here we have volDδ = π(1 + δ)2 ∼ πδ2−2.

We notice that if we express the lowest power of δ in volAδ where A is our set as 2− s for

an appropriate s, then s is the dimension of the set we are considering. We may also extend

this idea to three dimensions, in this case we have that X = R3. So for the three of the sets

we considered above, we now see that the δ−parallel body for a single point is a sphere, for

the line we have two hemispheres at each end of a tube around the line and for a circular

line it would be the torus enclosing. These volumes may be seen in (Table: 1).

Again we notice here that is we express the lowest power of δ in volAδ, where A is our set, as

3− s for an appropriate s, then s is the dimension of the set we are considering. In general,

for an easily described geometric shape, we may say that for A ⊂ Rn with the Euclidian

metric and X = Rn if Aδ ∼ δq then the value s is the dimension of A given by, q = n− s.

Table 1: The volume of certain parallel bodies

Shape, A volAδ in R3

Single point 4
3πδ

3 ∼ 4
3πδ

3−0

Line 4
3πδ

3 + πδ2(b− a) ∼ πδ3−1(b− a)

Circular line 2π2 · 1 · (2δ)2 ∼ 8π2δ3−1

4.2 Definition of Minkowski/Box Dimension

We observed above that the concept of dimension has a very intrinsic relationship with the

concept of δ−parallel bodies. We may now seek to define the Minkowski (or box) dimension

MA3PR 7 Prof. M. Levitin
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(a) The δ−parallel body of a circular line (b) The δ−parallel body of a circle

Figure 4: Two more δ−parallel bodies

of fractals, herein referred to as just the Minkowski dimension. We noticed that the volume

of a δ−parallel body is different depending on set we are considering the δ−parallel body

to be in, i.e. X. So we will make definition to be explicit in our calculations.

Definition 4.2. Let A ⊂ Rn with the Euclidean metric, then we define volnAδ to be the

volume of Aδ where X = Rn.

We may now define the Minkowski dimension of a set (Barnsley, M., 1988).

Definition 4.3. If A is a subset of Rn, then the upper and lower Minkowski dimen-

sions are,

dimBA = n− limδ→0

log voln(Aδ)

log δ
(3)

dimBA = n− limδ→0
log voln(Aδ)

log δ
(4)

respectively, where Fδ is the δ−parallel body to F . If the quantities (3) and (4) are equal we

refer to them as the Minkowski dimension or box dimension of F and we write

dimB = n− lim
δ→0

log voln(Fδ)

log δ
.

It is all very well quoting a definition and saying that this concept of definition. We now

seek to justify the above definition, through some examples.

Example 1. (a) We seek to find the Minkowski dimension of a single point A = {a}, with

X = R2. In this case as we have already discussed we have volnAδ = πδ2. Hence we

have here that the upper and lower Minkowski dimensions, respectively, are,

dimBA = 2− limδ→0

log πδ2

log δ
= 2− 2 = 0 (5)

dimBA = 2− limδ→0
log πδ2

log δ
= 2− 2 = 0, (6)

using L’Hospital to compute the limit. We have that the upper and lower sums are equal

hence the Minkowski dimension is 0. We see here that this is equal to the dimension

that we know of a singular point.

MA3PR 8 Prof. M. Levitin
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(b) We have already discussed the dimension of a circular line in R3. We will now seek to

compute the upper and lower Minkowski dimensions. These are respectively given by,

dimBA = 3− limδ→0

log 2π2 · 1 · (2δ)2

log δ
= 3− 2 = 1 (7)

dimBA = 3− limδ→0
log 2π2 · 1 · (2δ)2

log δ
= 3− 2 = 1, (8)

computing the limits as in the first example.

So we see here that this definition of dimension is consistent with our current knowledge of

dimensions of such sets as points and lines. It is easily enough shown to also be consistent

with our knowledge of dimension of shapes such as circles, spheres, cubes and other such

sets that are easily described by current geometry. We will see later in this paper that this

set is concept of dimension is also useful in describing the dimensions of fractals and while

returning an integer for the value of dimension as we currently know it, it does indeed give

us fractional dimension for the dimension of some fractals such as the Cantor set and von

Koch curve as seen later.

4.3 Alternative Definitions of Box Dimension

We now define a somewhat more useful version of the Minkowski dimension. This definition

is one of the most widely used due, in part, to its relatively easy calculation (Falconer, K.

J., 1990). We must first introduce another concept here to be able to make the definition.

Definition 4.4. Let F be a set and I a countable (or finite) indexing set. Let {Ui}i∈I be

a collection of sets. We say that {Ui}i∈I is a δ− cover of the set F if F ⊂ ∪i∈IUi with

0 < diam(U) ≤ δ for each i ∈ I.

In the above definition we are seeking to take individual sets of diameter at most δ and trying

to cover the entire set with them, (Falconer, K. J., 1990). Now with this new definition we

may make an alternative definition of the Minkowski dimension, the following proposition

gives such a definition and we prove its equivalence to the previous definition of Minkowski

dimension. The proof is lifted from “Fractal Geometry” (Falconer, K. J. (1990): 41-42).

Proposition 4.1. If F is a subset of Rn then the upper and lower Minkowski dimensions

are,

dimBF = limδ→0
logNδ(F )

− log δ

dimBF = limδ→0

logNδ(F )

− log δ

respectively, where logNδ(F ) is any of the following

(i) the smallest number of closed balls of radius δ that cover F ;
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(ii) the smallest number of cubes of side δ that cover F ;

(iii) the number of δ−mesh cubes that intersect F ;

(iv) the smallest number of sets of diameter at most δ that over F ;

(v) the largest number of disjoint balls of radius δ with centers in F .

Proof. Assume that F may be covered by Nδ(F ) balls of radius δ. Now consider Fδ. Plainly

this may be covered with balls of radius 2δ. Hence we obtain,

voln(Fδ) ≤ Nδ(Fδ)cn(2δ)n

where cn is the volume of a unit ball in the nth dimension, Rn. Now we take logarithms of

both sides of the above to yield,

log voln(Fδ)

− log δ
≤ log(2ncn) + n log(δ) + log(Nδ(F ))

− log(δ)
.

Proceeding to take limits we obtain,

lim
δ→δ

log voln(Fδ)

− log(δ)
≤ n+ dimB(F ). (9)

A similar inequality holds for the upper limit. On the other hand if there are Nδ(F ) balls

of radius δ that are disjoint and with centres in F , then

Nδ(F )cn(2δ) ≤ voln(Fδ).

Taking logarithms and limits yields the opposite inequality to (9), thus using definition (v)

we have equality.

We have now calculated the dimension of the middle third Cantor set (Falconer, K. J.

(1990): 43-44).

Example 2.

We now seek to compute the Minkowski dimension of the middle third Cantor set. We have

already discussed that at each stage Ek we have 2k intervals, of total length 3−k. Hence if

we covered the intervals of the Cantor set by the Ek, then we have that Nδ(F ) ≤ 2k provided

3−k < δ ≤ 3−k+1, then from (4)

dimBF = limδ→0
logNδ(F )

− log δ
≤ limk→∞

log 2k

log 3k−1
=

log 2

log 3
.

Additionally if an interval is of length δ with 3−k−1 ≤ δ < 3−k then this must logically

only intersect one of the intervals in the Ek by the width and definition of the Cantor set.

There are exactly 2k of these intervals so at least 2k intervals of δ width are necessary to

cover F . Hence, Nδ(F ) ≥ 2k. This leads to dimB(F ) ≥ log 2
log 3 . We have the upper and

lower Minkowski dimensions are equal. Hence we have that the Minkowski dimension of the

Cantor set is log 2
log 3 .
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5 Another concept of dimension

We will now consider an alternative definition of dimension. Alternative definitions can be

useful to us because the Minkowski dimension can be somewhat limited. Before we can

introduce this new concept of dimension we must first introduce the concept of a measure.

5.1 Measures

Before we can introduce the concept of a measure we first define a field.

Definition 5.1. Let X be a space. Let F denote a nonempty class of subsets of X such

that the following properties are true,

(i) A,B ∈ F ⇒ A ∪B ∈ F

(ii) A ∈ F ⇒ X\A ∈ F . Then F is called a field.

For further reading on the topic of fields and extensions the reader is directed to (Norman,

C. W. , 1986). Now we may define a measure.

Definition 5.2. A function µ from a field, F , to a non-negative real number(i.e. µ : F →
[0,∞) ⊂ R), is called a measure if the following three properties hold,

(a) µ(φ) = 0;

(b) µ(A) ≤ µ(B) if A ⊂ B

(c) If A1, A2, · · · is a countable (or finite) sequence of sets then

µ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai). (10)

A measure is called a mass distribution if 0 < µ(A) <∞.

This definition may be found in “An introduction to measure theory” (Tao, T. , 2011).

5.2 The Hausdorff Measure

Before we can define the Hausdorff dimension we need to define the Hausdorff measure

(Falconer, K. J., 1990).

Definition 5.3. Suppose that F is a subset of X and s is a non-negative number. For any

δ > 0 we define,

Hsδ(F ) = inf

{ ∞∑
i=1

diam(U)s : {Ui} is a δ − cover of F

}
.
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So we aim to minimize the sum of sth powers of the diameters of any cover of F of diameter

at most δ. As δ decreases the class of covers of F which satisfy our conditions decreases.

Therefore the infimum of Hsδ increases and so must approach a limit . Considering the limit

we define Hs as follows

Hs(F ) = lim
δ→0
Hsδ(F ).

We call Hs the s-dimensional Hausdorff measure of F .

5.3 Hausdorff Dimension

We may now define the Hausdorff dimension (Falconer, K. J., 1990).

Definition 5.4. The Hausdorff dimension, denoted dimH of a set F ⊂ X s defined by,

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞}

5.4 Relationship between Hausdorff and Minkowski Dimension

It is important to understand the relationship between the Minkowski and Hausdorff di-

mension. It is already obvious that we have that dimB(F ) ≥ dimB(F ). We ask how the

Hausdorff dimension fits into this. Now it is apparent from the definition of the Hausdorff

measure that if we have that F may be covered by Nδ(F ) sets then Hsδ ≤ Nδ(F )δs. Now if

we have that 1 < Hs then logNδ(F ) + s log(δ) > 0, given that δ is small enough. Thus,

s ≤ limδ→0

logNδ(F )

log δ
.

So we have that,

dimH(F ) ≤ dimB(F ) ≤ dimB(F ). (11)

This gives us a very good idea of how the two relate (Falconer, K. J. (1990): 42-43) and

will be used in the final step of our principle result.

6 Properties Of Dimension

6.1 Properties of Dimension

In so far we have discussed two different concepts of dimension. We have yet to give any

rigorous definition of what a function that yields “dimension” is (Falconer, K. J. (1990):

29). From our previous studies there are a few properties we expect from dimension. These

are listed below and we will give justification for them.
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6.1.1 Properties of General Dimension

(i) Monotonicity: If E ⊂ F then dim(E) ≤ dim(F ).

(ii) Stability: dim(E ∪ F ) = max{dim(E), dim(F )}

(iii) Countable stability: dim(∪∞i=1Fi) = sup1≤i<∞{dimFi}

(iv) Geometric invariance: dim(f(F )) = dim(F ) if f is a transformation of Rn such as

a translation, rotation, similarity or affinity.

(v) Countable sets dimension: dim(F ) = 0 if F is finite or countable.

(vi) Open set dimension: If F is an open subset of Rn then dim(F ) = n.

The first is quite apparent as we expect a smaller set to have smaller dimension. Next

we talk about stability. It seems logical that the union of two sets could not increase

dimension, and extending this idea to a countable number of sets we obtain the countable

stability condition. Following that we consider geometric invariance, one would assume that

by turning a set you could not reduce its dimension; a line turned π
2 is still a line, similarly

with a square. Indeed moving a shape in Rn should not change its dimension. We know that

the dimension of a point is zero. This means that, from the countable stability condition,

if {Fi} is a countable collection of singletons then again we would have dimension zero.

Lastly; if F is an open set, then by definition of an open set ∃r > 0 such that Br(a) ⊂ F for

some a ∈ F . Then we have that the dimension of F must be at least n this and obviously

it cannot be greater than n as F ⊂ Rn so therefor we must have that the dimension of F

is exactly n. (Assuming our definition of dimension is less than or equal to the topological

dimension.)

These are the properties we primarily think of when we discuss dimension. Although these

are what we generally think a concept of dimension should have, we will not require that

dimension should have all of these. Here we adopt the same approach as we did when

defined a fractal and as such ask that the reader forms a broad concept of dimension and

not a rigorous definition. This will be more advantageous to us, as we will see in the next

section that the concepts of dimension we have already discussed insofar don’t satisfy all of

these conditions.

6.1.2 Properties of Minkowski & Hausdorff dimension

We now explore the properties of the Minkowski and Hausdorff dimensions. After defining

these it is important to know their limits. We will then seek to make a new definition, a

modified Minkowski dimension. This will be to address the properties that the Minkowski

dimension does not satisfy and, as it is of our primary focus, see which properties the

modified Minkowski dimension satisfies (Falconer, K. J. (1990): 29,44).
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Table 2: Properties of dimension

Property dimB dimB dimH

Monotonicity 3 3 3

Stability 3 7 3

Countable Stability 7 7 3

Lipschitz Invariance 3 3 3

Countable Sets Dimension 7 7 3

We see here that although the Hausdorff dimension satisfies these conditions, the Minkowski

dimension is much more limited. The advantages of the Minkowski dimension is that in

general it is much easier to calculate. However this is at a loss as can be seen above in

the table or from the definition. We see that the Minkowski dimension relies on the upper

and lower Minkowski dimension to be equal, and if they are not then the dimension does

not exist. While the Hausdorff dimension has many more properties that we may consider

“nice”, it is in principle much harder to calculate than the Minkowski dimension. So we

see that while both have their merits, they both have drawbacks as well. We now question

whether we could “improve” the Minkowski dimension. Could we through a different defi-

nition, which is formed along the same lines of thinking, that we recoup the properties we

would like? We explore this idea below.

6.2 Modified Minkowski Dimension

Definition 6.1. We define here the modified Minkowski dimension. If {Ui}is a cover of

F then we define the upper and lower modified Minkowski dimensions to be

dimMB(F ) = inf

{
sup
i

dimB(Ui) : F ⊂
∞⋃
i=0

Ui

}

dimMB(F ) = inf

{
sup
i

dimB(Ui) : F ⊂
∞⋃
i=0

Ui

}

respectively.

This gives us all of the properties that we stipulated a concept of dimension should have

(Falconer, K. J. (1990): 46). However we do note here that we have merely defined a

different concept of dimension, although it is a function of the Minkowski dimension. The

natural questions we ask is are these two concepts similar? The best result we could have

would be finding they are very similar i.e. returning the same value for many sets. So we

ask when these two concepts are equal. The following proposition gives us some idea of

this.
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Proposition 6.1. Let F ⊂ Rn be compact. Suppose that

dimB(F ∩ V ) = dimB(F )

for all open sets V that intersect with F . Then dim(F ) = dimM B. A similar result holds

for the lower Minkowski dimensions.

Note:. We omit this proof due to the large amount of topology and functional analysis

required to prove Baire’s category theorem. The proof of Baire’s category theorem can be

found in (Rudin, W. , 1987) and the proof of this proposition can be found on (Falconer,

K. J. (1990): 46).

7 Hutchinson’s Theorem And Self Similar Sets

After defining these two concepts of dimension the natural question to ask if these concept

are equivalent and, if they are not, when are they equal, if ever. This shall be our main

result. We first propose the mass distribution principle (Falconer, K. J. (1990): 55).

7.1 Mass Distributions And The Mass distribution Principle

Proposition 7.1. Let µ be a mass distribution on F and suppose that for some s there are

numbers c > 0 and δ > 0 such that

µ(U) ≤ c · diam(U)s

for all sets U with diam(U) ≤ δ. Then Hs ≥ µ(F )
c and

s ≤ dimH(F ) ≤ dimB(F ) ≤ dimB(F ).

Proof. If {Ui} is any cover of F then

0 < µ(F ) = µ

(⋃
i

Ui

)
≤
∑
i

µ(Ui) ≤ c
∑
i

diam(Ui)
s.

Taking the infimum of both sides, we obtain Hsδ ≥
µ(F )
c if δ is small enough, so Hs(F ) ≥

µ(F )
c

7.2 Contractions And Similarities

When we defined the fractal we talked a lot about self-similarity we now seek to give some

substance to this idea.
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Definition 7.1. A transformation S : X → X, on a metric space (X, d), is called a

contraction mapping if there is a constant 0 ≤ s < 1 such that

d(f(x), f(y)) ≤ c · d(x, y) ∀x, y ∈ X

where the number c is the ratio for f . Moreover if we have equality in the above equation

then we call f a similarity (Barnsley, M., 1988).

7.3 Invariant Sets

Definition 7.2. If we have that S1, · · · , Sn are contractions. We call a subset F of D

invariant for the transformation S1, · · · , Sn if

F =
n⋃
i=1

Si(F ).

This definition, and an alternative proof of our main theorem may be found in (Hutchinson,

J. E., 1981). Before we may continue we must make one last topological definition, this

may also be found in (Sutherland, W. A. , 2009)

Definition 7.3. If A is a subset of a metric space (X, d) and A is covered by a family of

open sets {Ui} we call the family an open cover of A. We call A compact if every open

covering of A contains a finite number of sets {Vi} which cover A and we have ∪Vi ⊂ ∪Ui.

We may prove a theorem here which is necessary for our main result. This theorem and

proof may be found in “Fractal geometry” (Falconer, K. J. (1990):114-115).

Theorem 7.1. Let S1, · · · , Sk be contractions D ⊂ Rn such that,

d(Si(x), Si(y)) ≤ ci · d(x, y) ∀x, y ∈ X

with 0 < ci < 1 for 1 ≤ i ≤ k and d as the Euclidean metric. Then there exists a

unique compact set F that is invariant under the contractions Si. Moreover if we define a

transformation S on the class of non-empty compact sets that are subsets of D by, S(E) =

∪mi=1Si(E). With the notation Sk(E) for the kth iteration of S given by,

Sk(E) =
⋃
Jk

= Si1 ◦ Si2 ◦ · · · ◦ Sik

where Jk is the set of all sequences with k terms (i1, · · · ik) with 1 ≤ ij ≤ m. Then we have

that,

F =
∞⋂
k=1

Sk(E) (12)

for any non-empty compact set E ⊂ D such that Si(E) ⊂ E for each i.
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Proof. Note that if we apply S to any non-empty compact set we obtain a non-empty

compact set. Let E be any set satisfying the condition Si(E) = E∀i. We may take Br(0)∩D,

which will suffice for our purpose as long as r is sufficiently large. Then we have that Sk(E) ⊂
Sk−1(E) i.e. Sk is a decreasing sequence of non-empty compact sets. These compact sets

have necessarily non-empty compact intersection. We denote this by F = ∩∞k=1S
k(E). Now

since we have that Sk(E) is a decreasing sequence, it follows that S0(F ) = S(F ) = F , hence

F is invariant.

Now we claimed that this set F is invariant. We now seek to prove this claim. We defined a

metric on the space of L = {A : A is compact and A ⊂ D}. We denote this as e and define

it as follows,

e(A,B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}.

This is easily checked to be a metric We do so by satisfying the three criteria we stated in

the introduction. The first two are fairly apparent, as from the definition of a δ−parallel

body we must have that δ ≥ 0, and if δ = 0 then A ⊂ B0 = B, also B ⊂ A0 = A so A = B.

Moreover, from the definition of our metric, changing the places of A and B has no effect

due to the symmetry of the definition, thus the third condition is also true. Now we have

that (L, e) is a metric space. So consider if A and B are invariant sets, then,

e(S(A), S(B)) = e

(
m⋃
i=1

Si(A),
m⋃
i=1

Si(B)

)
≤ max

1≤i≤m
e(Si(A), Si(B)),

as if (Si(A))δ ⊃ Si(B) ⇒ (∪mi=1Si(A))δ ⊃ ∪mi=1Si(B). Hence we have that, e(S(A), S(B)) ≤
(max1≤i≤m ci)e(A,B). It follows that if S(A) = A and S(B) = B then d(A,B) = 0⇔ A =

B.

Thus we have that e(S(E), F ) = e(S(E), S(F )) ≤ (max1≤i≤m ci)e(E,F ) therefore, e(Sk(E), F ) =

(max1≤i≤m ci)
ke(E,F ). Hence we have that e(Sk(E), F ) → 0 as k → ∞. So we have that

Sk(E) converges to F i L for any E ∈ L.

7.4 Open Set Condition

Lastly we define the open set condition (Hutchinson, J. E., 1981).

Definition 7.4. Let S1, · · · , Sn be similarities on the set F . We say that the Si satisfy the

open set condition if

∃V 6= φ, with V open and bounded such that V ⊃
n⋃
i=1

Si(V ).

We now state and prove our main result.
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7.5 Hutchinson’s Theorem

The following lemma, theorem and both proofs are from “Fractal geometry” (Falconer, K.

J. (1990): 118-119). The proofs are near identical following the same structure and notation

but more explicitly written.

Lemma 1. Let {Vi} be an arbitrary collection of disjoint subsets of Rn with each Vi open

for each i ∈ I, where I is an indexing set. If Ba1r(x) ⊂ Vi ⊂ Ba2r(x) for some x ∈ Vi and

appropriate radii. Then any ball Br must intersect at most (1 + 2a2)
na−n1 of the closures of

Vi.

Proof. If Br intersects with Vi then Vi ⊂ B(1+2a2)r. Suppose that q of the Vi intersect with

Br. Now summing the volumes of the corresponding interior balls of radii a1r, we logically

have that q(a1r)
n ≤ (1+2a2)

nrn. Dividing through to obtain q we have the required bound

for q.

Theorem 7.2 (Hutchinson’s Theorem). Assume that the open set condition, as above, holds

for the similarities S1, S2, · · · , Sn on Rn with similarity ratios ci(0 ≤ i ≤ m). If F is the

invariant set satisfying,

F =

m⋃
i=1

Si(F ) (13)

then dimH(F ) = dimB(F ) = s, where s is given by,

n∑
i=1

csi = 1. (14)

Moreover for this value of s, 0 < Hs(F ) <∞.

Proof. Assume that s is the number as given by (14). We define for any set A we have that

Ai1,i2,··· ,ik = Si1 ◦Si2 ◦ · · · ◦Sik(A), where the Si are the similarities given from the fact that

F is a invariant set. So we are considering the set A under the composition of k similarities,

for arbitrary k. We here let Jk be the set with members being the sequences (i1, · · · , ik)
such that 1 ≤ il ≤ m with k terms. In other words Jk is the set of all of the sequences of

the il (1 ≤ il ≤ m) such that we may consider the set Aj where j = (i1, · · · , ik) ∈ Ik. Now

it is apparent that,

F =
⋃
Ik

Fi1,··· ,ik (15)

(15) comes from (13). This can be seen easily first note that,

⋃
Ik

Fi1,··· ,ik =
m⋃
l1=1

Sl1

 m⋃
l2=1

Sl2

· · · m⋃
lk=1

Slk(F )

 .
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As for any sequence j ∈ Jk we may write this as (i1, · · · , ik) such that 1 ≤ il ≤ m. Hence, by

choosing l1 = i1, l2 = i2, · · · , lk = ik we have that Fi1,··· ,ik is in our left hand side, hence the

left hand side is a subset of the right hand side. The argument works in reverse. Let Fl1,··· ,lk
be in the right hand side, then choosing (i1, · · · , ik) such that l1 = i1, l2 = i2, · · · , lk = jk
and we have that it must be in the left hand side. So the sets must be equal. Now from

(13) we have that,

m⋃
l1=1

Sl1

 m⋃
l2=1

Sl2

· · · m⋃
lk=1

Slk(F )

 =
m⋃
l1=1

Sl1

 m⋃
l2=1

Sl2

· · · m⋃
lk−1=1

Slk−1
(F )

 .

Applying this argument k times we obtain (15).

We now confirm that these covers provide us with a suitable upper bound for the Hausdorff

measure. We know that each of the Si is a similarity with similarity ration ci, it follows

that Si1 ◦Si2 ◦ · · · ◦Sik must logically have similarity ratio ci1 × ci2 ×· · ·× cik . We now have

that, ∑
Jk

diam(Fi1,··· ,ik)s =
∑
Jk

(ci1ci2 · · · cik)sdiam(F )s

=

(
m∑
i1=1

csi1

)
· · ·

 m∑
ik=1

csik

 diam(F )s

= diam(F )s

by (14). Now we have that ∀δ > 0 we may choose k such that diam(Fi1,··· ,ik) ≤ (maxi ci)
k ≤

δ. So we have that Hsδ ≤ diam(F ) and as Hs ≤ Hsδ we have that Hs ≤ diam(F ).

We now need to find a lower bound for the Hausdorff measure. We define I to be the

set of infinite sequences of the ij , i.e. I = {(i1, i2, · · · ) : 1 ≤ ij ≤ m}. Now also let

Ii1,··· ,ik = {(i1, i2, · · · , ik, qk+1, · · · ) : 1 ≤ ij ≤ m&1 ≤ qj ≤ m} be the set consisting of all

the sequences of initial terms (i1, · · · , ik). We may now put a mass distribution, µ on I

with µ(Ii1,··· ,ik) = (ci1 · · · cik). Now note that,

(ci1 · · · cik)s =
m∑
i=1

(ci1 · · · cikci)
s (16)

from (14). Equivalently we have µ(Ii1,··· ,ik) =
∑m

i=1 Ii1,··· ,ik,i. Indeed we have that µ is a

mass distribution, further for the subsets of I we have that µ(I) = 1. Now note that from

(12) we have that for subsets A of F if Si(A) ⊂ A for each i and x ∈ F then there exists a

sequence (i1, · · · , ik) such that x ∈ Ai1,··· ,ik . Hence we denote this xi1,i2,···. Now we extend

the mass distribution µ to F , which we will denote this µ̃. We define this on the subsets A

of F as µ̃(A) = µ{(i1, i2, · · · , ik) : xi1,i2,··· ∈ A}. It is easily confirmed that µ̃(F ) = 1.

We now demonstrate µ̃ satisfies (7.1). Let V be the open set stipulated by the open set

condition. Now as we have that S(V ) ⊂ V where S(V ) = ∪mi=1Si(V ). Recall from the last

theorem that Sk(V ) is a decreasing sequence and as V ⊃ F we have that Sk(V ) converges
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to F , by (12). Moreover we have that V i1,··· ,ik ⊃ Fi1,··· ,ik for all sequences (i1, · · · , ik).
Now consider Br, we estimate µ̃(Br) by considering the sets Vi1,··· ,ik where diam(Vi1,··· ,ik) ≈
diam(Br) and with closures intersecting F ∩Br. We truncate every sequence (i1, i2, · · · ) ∈ I
after the first term ik for which the statement,(

min
i
ci

)
≤ ci1ci2 · · · cik ≤ r (17)

is true. Now let Q denote the finite set of all of the finite sequences generated this way.

Then we have,

∀(i1, i2, · · · ) ∈ I ∃ unique k such that (i1, · · · , ik) ∈ Q.

Now since each Vj for 1 ≤ j ≤ m is disjoint by assumption, so are the Vi1,··· ,ik,j for j as

before and each (i1, · · · , ik). So we have that each open set in {Vi1,··· ,ik : (i1, · · · , ik) ∈ Q}
is disjoint. Following the same ideas we obtain, F ⊂ ∪QFi1,··· ,ik ⊂ ∪QV i1,··· ,ik .

Now we choose a1 and a2 such that we have Ba1 ⊂ V ⊂ Ba2 . Then for (i1, · · · , ik) ∈ Q, the

set Vi1,··· ,ik ⊃ Bci1 ···cika2 and hence we also have Bmini cia1r ⊂ Vi1,··· ,ik ⊂ Ba2 . Now consider

Q1 = {(i1, · · · , ik) ∈ Q such that Br ∩ V i1,··· ,ik 6= φ}. The by the lemma proved just before

this theorem we have that there are at most q = (1 + 2a2)
na−n1 (mini ci)

−n such sequences

in Q1. Then we have that,

µ̃(Br) ≤ µ{(i1, · · · , ik) : xi1,i2,··· ∈ F ∩Br}

≤ µ{
⋃
Q1

Ii1,··· ,ik}

as if xi1,i2,··· ∈ F ∩ Br ⊂
⋃
Q1
V i1,··· ,ik then there exists an integer k such that (i1, · · · , ik).

Thus we have that,

µ̃(Br) ≤
∑
Q1

µ(Ii1,··· ,ik)

=
∑
Q1

(ci1 · · · cik)s ≤
∑
Q1

rs ≤ rsq

using (17). Now since U is any set with U ⊂ Bdiam(U), we have that µ̃ ≤ diam(U)q. So

by (7.1) we have that Hs ≥ q−1 > 0 and we have that dimH(F ) ≥ s, but we have already

shown dimH(F ) ≤ s. Hence we have that dimH(F ) = s.

We have shown that the Hausdorff dimension is equal to s. We must now show that we also

have that the Minkowski dimension is also equal to s. Now if we haveQ as an arbitrary set of

infinite sequences such that for every (i1, i2 · · · ) ∈ I there is one k such that (i1, · · · , ik) ∈ Q.

We may apply (14) inductively to obtain that
∑
Q(ci1 · · · , Cik)s = 1. Thus if we choose Q as

before then we have that Q contains at most (mini ci)
−sr−s sequences. For each sequence in

Q we have diamV i1,··· ,ik = ci1 · · · ciqdiam(V ) ≤ rdiamV . So logically F may be covered by

(mini ci)
−sr−s sets of diameter rdiamV for each 0 < r < 1. Now from alternative definition

of the Minkowski dimension (iv), we have that that dimB(F ) ≤ s and since the Hausdorff

dimension is also s from (11) we have that dimB(F ) = dimH(F ) = s.
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This is the code for the animated graph as discussed in section 4.1. All the other graphs

are merely variants on this main code.

t = 0 : 0 . 0 1 : 0 . 5 ;

f i g u r e (1 )

f i l ename = ’ testnew51 . g i f ’ ;

f o r n = 1 : 0 . 1 : 2 0

s= s i n (2∗ pi ∗2∗ t ) ;

c= cos (2∗ pi ∗2∗ t ) ;

s1 = (1 + 1/n)∗ s i n (2∗ pi ∗2∗ t ) ;

c1=(1 + 1/n)∗ cos (2∗ pi ∗2∗ t ) ;

s2=(1− 1/n)∗ s i n (2∗ pi ∗2∗ t ) ;

c2=(1− 1/n)∗ cos (2∗ pi ∗2∗ t ) ;

p l o t ( s , c , ’−b ’ , s1 , c1 ,’−−r ’ , s2 , c2 ,’−−black ’ ) ;

a x i s ( [ −1 .5 , 1 . 5 , −1.5 , 1 . 5 ] ) ;

drawnow

frame = getframe ( 1 ) ;

im = frame2im ( frame ) ;

[ imind , cm ] = rgb2ind ( im , 2 5 6 ) ;

i f n == 1 ;

imwrite ( imind , cm, f i l ename , ’ g i f ’ , ’ Loopcount ’ , i n f ) ;

e l s e

imwrite ( imind , cm, f i l ename , ’ g i f ’ , ’ WriteMode ’ , ’ append ’ ) ;

end

end
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