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Practical Machine Learning for Diabetes Care

Sam Royston

Abstract—Diabetes patients must monitor and control their own blood glucose levels with the intention of approximating
the blood glucose levels and dynamics of a typical person. This is an onerous task for most diabetics and this paper will
survey a handful of ways that these challenges might be practically addressed with Machine Learning. The regressive
versions of AdaBoost and SVMs are evaluated for feasability for blood sugar prediction in the context of intermittent
data. The SVM and AdaBoost classification methods are also evaluated for their performance in predicting hypoglycemic
events, which are harmful if left untreated. Possible applications of these methods are presented along with a discussion
of future research topics and the many factors effecting the success of diabetes treatments.

1 INTRODUCTION

YPE-1 Diabetes is an autoimmune disease

that affects up to 3 million americans and
many more overseas. The disease is caused
by the immune system attacking the body’s
own pancreas and compromising it’s ability to
produce the hormone insulin, which is necce-
sary to metabolize carbohydrates. The disease
is chronic and treatment consists of constant
monitoring of blood glucose (BG) levels and
administration of insulin via injection or sub-
cutaneous catheter (insulin pump). In a person
without diabetes, the body is able to maintain
very tight control on blood glucose levels by
releasing insulin in real time in response to
BG changes. It has been shown that in type-
1 diabetics, good blood glucose control can
help prevent complications associated with the
disease. A high average blood glucose (chronic
hyperglycemia) can cause complications such
as blindness, amputation, and heart failure.
Low blood glucose, or hypoglycemia, results
in temporarily diminished brain function and
the release of adrenaline from the liver, which
can be quite disorienting to the patient. If left
untreated for an extended period of time Hy-
poglycemia can result in a seizure, coma, or
death. For type-1 diabetics BG control is solely
dependent on their ability to interpret, predict,
and respond to past BG readings. Techniques
that can aid in the prediction and ultimately
the control of blood glucose levels will be of
great help to type-1 diabetes patients.

Another quality of diabetes care that has
informed the construction of this study is its
inordinate cost. Diabetes care accounts for 14.9
billion in health care costs in the United States
and with every incremental advance in the
state of the art, costs are pushed even higher.
Especially in impoverished nations, many with
diabetes may not have access to the most basic
supplies [8]. It is clear that even in the face
of significant technological advances in the de-
veloped world, such as the continuous blood
glucose monitor discussed below, cost cutting
measures will play a central role in the global
treatment of the disease for years to come.

The continuous glucose monitor (CGM) is a
device that takes blood sugar measurements on
the order of every 2 minutes. This is in stark
contrast to the method of finger-sticking, which
is the norm in diabetes care and is performed
anywhere from 3 - 10 times daily. The advent of
internet connected mobile devices in addition
to advances such as the CGM introduce the
possibility of analyzing BG results in real time
and quickly offering actionable data.

The intention of this paper is to explore new
applications of machine learning in the domain
of diabetes care that caters to one or more of
the following goals, each related to practicality
in the real world

1) Use data from economical hardware, or

in a way such that cost is minimized

2) Require minimal additional effort from

the patient

3) “Get on the bandwagon” of technological
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advances which will continue to improve
independently of events in the field of
health care; i.e. smartphones, cloud ser-
vices... etc.

In an attempt to address the 1) and 2) we assess
the extent to which BG data taken at typical
intervals (3-10 times daily) can be used to make
predictions about future blood sugars without
any external information about insulin dosages
and food intake. Futhermore, we discuss how
we might use prior CGM data to aid in this
process. For example: what useful information
can be gleaned while a patient is given a
CGM on loan? Due to the dynamics of health
care reform and certain economic realities, it is
the author’s belief that a majority of diabetics
will be using finger-stick methods for years to
come, and this majority will persist in spite of
advances such as the CGM.

2 DATASETS

In this survey three different datasets were
used with the hope of learning about the be-
havior of learning algorithms in three contexts.

2.1 CGM Data

52514 BG measurements from a 14 year old
male undergoing CGM therapy over a course
of roughtly 7 months. In this dataset the rate
of BG measurements is not constant (ranging
anyhere from every 2 minutes to every 10
minutes), and at times there are long (~ 4 hr)
breaks in data ostensibly when the device is
being replaced.

2.2 Finger-Stick Data
2.2.1

We used data from the UCI machine learning
database [5] which consisted of 5064 blood
sugar measurements taken at what we will
consider in this study as a normal rate (~ 3-
5) measurements daily. The UCI database also
contains a variety of other recorded patient
data, like insulin dosages, food intake, and
exercise.

Comprehensive logging data

2.2.2 Self-Collected Data

Lastly, some experiments were done on a
dataset collected by the author, which consists
of 220 blood glucose measurements (and grow-
ing) taken at a rate of approximately 5—8 times
per day.

3 PRIOR WORK

The topic of applying machine learning to di-
abetes data is not new, but it has seen a recent
uptick in interest due to the data that will be
offered by more widespread usage of CGM
devices and connected meters. It is the ultimate
goal of many researchers to “close the loop” in
glucose control by implementing an automated
system that actively monitors BG and delivers
insulin in real time. To that end, many current
publications focus on CGM data, whereas this
study is more concerned with the ability to
make decisions about Fingerstick-Data.

Recent work by Marling et. al. [10] uses fea-
tures derived from an underlying physiological
model [7] to train an Support Vector regressor.
This proves to be a good approach in terms of
feature extraction, in fact outperforming some
doctors in prediction tasks.

Jensen et. al. [6] chose features from a set
of 2289 potential features defined by statisti-
cal measures (Linear regression, Skewedness,
Kurtosis) taken over many intervals of the pre-
ceding data. A choice of 7 from this set was
made based on a Separability and Correlation,
(SEPCOR) analysis.

Both of these studies give results with high
accuracy, but are designed specifically for CGM
data and use features that are dependent on the
density of CGM data and the input of other in-
formation such as Insulin dosages. Despite the
inconsistencies with our experimental setup,
these publications still offer valuable insight
into the problem.

4 METHODS AND PROCEDURES

The toolkits numpy, scipy, and scikit-learn [3]
[2] [1] were chosen to do the following data
processing, and the scikit-learn functions
ensemble.AdaBoostCLassifier,
ensemble.AdaBoostRegressor,
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tree.DecisionTreeClassifier,
tree.DecisionTreeRegressor,

svm.SVR, svm.SVC were used as the
learners. Along with the author’s familiarity
with these software tools, they were also
selected because of their easy integration
into server-side software applications should
they be deemed effective. Below is a table
describing the dataset and research question
pairings that were explored in some capacity
through this study.

Dataset Methods Problem Types
Used

UCI (2.2.1) | AdaBoost, Hypoglycemia
SVM Classification

CGM (2.1) | AdaBoost, BG Prediction
SVR

Self- AdaBoost, Hypoglycemia

Collected SVM, SVR Classification,

(2.2.2) BG Prediction

4.1 Features

The original intention had been to leverage
rich data from CGM devices to make predic-
tions about fingerstick data, so features were
designed with the purpose of being applicable
to all three datasets. Thus the description the
of these features is in terms of an array of
BG measurements taken at a rate resembling
fingerstick data. Let this array be called D. The
BG measurement associatd with the feature
vector D; is denoted m(D;), and the time of
measurement, as a unix time-stamp, is written
as t(D;). Given this initial data, the feature
vector f; is constructed as follows:

fi= [m(D(i_l,i_g)), At(D(i—l,i—3))v td(Di)7 co

- 0(Lpaint(D)), S(Lpait (D)), 0 (m (D)), S(m(D))]

Where

m(Di-1,i-3)) = m(Dgi-1)), m(Di—2)), m(Di-3)

At(D(i_lji_gﬂ - t(DZ)—t(DZ_1>, t(DZ)_t(Dz_Q), oo

. t(D;) — t(Di_3)

t4(D;) = H(D;)mod(86400)

Npairt(D) is the set of pairwise differences
in measurement time and o (A, t(D)) is the
set of rolling standard deviations of A, t(D)
taken over the past 3,510, and 20 samples.
Similarly ¥(A,.-t(D)) is the set of moving av-
erages taken over the same intervals. o(m(D))
is the set of rolling standard deviations of
BG measurements over those intervals, and
Y(m(D)) are the corresponding rolling aver-
ages. Since t(D;) is a unix-timestamp, when
taken modulo the number of seconds in a day,
the result is a feature repsesenting the time of
day: t4(D;).

As for this choice of features, the reasoning
was based on a number of factors listed below:

o Lagged-Values are the simplest possible
feature selection for time series data. Also
their performance is not neccessarily bad
in spite of their simplicity [4]. We only look
back three steps in this setting because it
is questionable whether BG measurements
from more than 3-4 hours in the past have
a discernable effect on the current blood
sugar.

« Moving-averages over different intervals
could be an effective way to describe
longer term trends preceding the relevant
measurement, and have been shown to be
effective in time-series prediction [4]

o At(D(—1,-3)) is selected because it will
differentiate features along these three axis
as time passes, even if there are no new
measurements. This allows for continuous
reupdate of the results, but may also lead
to some strange geometric qualities of the
training data.

o The rolling standard deviation compo-
nents are intended to characterize the
volatility of the user’s control, and whether
it is increasing or decreasing leading up to
the relevant measurement.

4.2 Preprocessing

In order to coerce the data into a form that
could generate the features listed in section



December 16, 2014

4.1, we had to make sure that there was some
sequence D to work with.

With respect to the CGM data, this meant
taking a sample that would share some charac-
teristics of finger-stick data. This was acheived
in a somewhat naive fashion by taking a ran-
dom sample from the CGM data at a density
equivalent to the density of the self-collected
blood glucose measurements.

Once our set of features was defined, we
scaled all values (by column) to lie within [0, 1],
because the support vector model is not scale
invariant.

5 TRAINING AND RESULTS

A number of parameters need to be optimized
for use in both AdaBoost and the Support
Vector models, namely v, C,n, and h. Where
v is simply another formulation of ¢ in the
(0,C) parameter pair associated with SVMs:
o = % nq represents the number of base
classifiers used by the AdaBoost model, and &
is the maximum height decision tree allowed
as a base classifier. We optimised these values
via cross validation. Below are some selected
grid search results

5.1 UCI Data

The UCI dataset was the primary dataset used
for testing the potential of detecting hypo-
glycemic events. The one 10th of the dataset
was designated as the test set, while the rest
was used in 2-fold cross validation (Due to
time constraints). There was some concern that
this non-i.i.d. data would yield inflated cross-
validation results if shuffled, so we performed
this procedure with shuffled data and non-
shuffled data and found there to be no signif-
icant difference, although problems may have
been revealed with a greater number of cross
validation folds.

A major issue with low blood sugar clas-
sification is that hypoglycemic measurements
only account for some minority of the total
measurements. In the UCI dataset, roughly
10% of all readings were less than 68 mg/dl,
which we designate as “low”. Some measures
had to be taken to account for this, otherwise

most classifiers would end up labeling every-
thing false and receive an accuracy rating of
~ 90%. Therefore class weights were assigned
to be inversely proportional to the frequency of
the hypoglycemic measurements. Furthermore,
these weights were factored into the accuracy
measuremnts used to asses performance.

2

1
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Fig. 1. Grid Search for AdaBoost classifier train-
ing on UCI data, yielding n, = 700 and h = 1.

(The y-axis is {&b)

Fig. 2. Grid Search for SVM on shuffled UCI
data, yielding v = 16 and C' = 0.125. Color is
shown as a function of measured accuracy and
the axes scale exponentially from 275 to 28
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Fig. 3. Grid Search for SVM on non-shuffled UCI
data, yielding v = 16 and C' = 0.125. Color is
shown as a function of measured accuracy and
the axes scale exponentially from 28 to 28

AdaBoost| SVM
(rbf)

0.55

Accuracy | 0.53
(Test)
Precision | -
(Test)
Recall -
(Test)
f1-Score - -
(Test)

Accuracy
(Cross-
Val)

Precision | -
(Cross-
Val)

Recall -
(Cross-
Val)

fl-score -
(Cross-
Val)

0.12

0.67

0.61 0.59

0.22

0.62

0.26

5.2 CGM Data

For the CGM dataset, it was neccesary to use
the down-sampling procedure described ear-
lier. This differentiated these features dramat-
ically from the other datasets and based on a
few tests it was easily seen that this precluded

R2
AdaBoost lookahead | 0.43
(na, h) = (40, 20)
SVR lookahead | 0.21
(7,6 C) = (0.7,7,500)

RQ
AdaBoost no-lookahead | 0.19
(na, h) = (40, 20)

the possibility of interoperability for forward
looking predictions, i.e. training on the CGM
data and testing on some other fingerstick
dataset. One factor to consider is that each
dataset was taken from a separate patient, and
there may be some things about the CGM data
that must be “unlearned” before applying it
elsewhere.

With CGM data it was possible to validate
predictions at a much higher rate, and thus
for every interval between test points we could
track the performance of our regressor against
the actual behaviour of the patient’s blood glu-
cose. Indeed, without more information about
food intake and insulin administration this
problem is in some sense ill-posed, but the
AdaBoost regressor was still able to accurately
model the behavior of the underlying BG, di-
rectly following a measurement. Thus it follows
that this same regressor can accurately model
the underlying BG between two known mea-
surements separated by a reasonable amount
of time. Because of this, we also ended up as-
sessing the performance of an identical system
with the ability to look one measurement ahead
into the future.

Surprisingly, in this context, the top perform-
ing model was an AdaBoost Regressor with
what seem to the author to be abnormally deep
decision trees (h = 20).

6 DISCUSSION AND FUTURE WORK

The majority of the tested methods performed
with very low accuracy, and for the low blood
sugar identification task, approached chance.
Despite this, it is important to recognize the
difficulty of of these tasks and the limited
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Fig. 4. Above is an SVR model (green line) intended to predict intra-measurement BG behavior
based solely on the measurement samples (blue dots) over a 5 day period. The red line is the
actual CGM measurements. While it is clear that this learner is not succeeding at it’s task, this
image helps elucidate the challenges that classifiers face using features like this. At the introduction
of each new data point (red dot) the regressor is handed a vastly different feature and thus a
discontinuity occurs in the predicted data.

400

350

300

250

00960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 1.005

Fig. 5. Above is the only shown regressor that is technically predicting the future (black line), shown
over a 6.2 day period. While it does a decent job directly after measurements (red dots), there are
often large discontinuities when it has to adjust to new measurements. In contrast to any SVR

model that was trained, this regressor has learned that directly after a given measurement the BG
must be very similar to this measurement.
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Fig. 6. The above AdaBoost Regressor (black line) with a 1-measurement look-ahead, exibited
the lowest R? error rate. When inspected, it shows some promising behavior in predicting intra-
measurement dynamics. It shuold be noted that there are certain spikes and nadirs that it misses,
but they always occur over long intervals with no measurments.

information that was allowed into the feature
vectors. In fact false positives (which the
best hypoglycemia classifier we found had
many of), are not so bad in this scenario. That
said, there are many improvements to be made.

« Given the sampling method for the CGM
data, some feature components may liter-
ally represent random noise and thus their
utility in building a classifier for use on
other data is questionable.

o The CGM sampling method itself could
stand to be improved, possibly by taking
into account a known distribution for BG
measurements.

o There is also the question of what hap-
pens when the user begins to heed the
machine’s advice, which suggests research
into applying on-line in this setting.

o« The performance of the intra-measurement
regressor should be benchmarked against
the physiological models used by physi-
cians to perform the same task.

Ultimately, the self-collected data was not
big enough to have comparable results us-
ing any of the above methods, but a proto-
type web service has been designed to up-
date and store new BG measurements in real-
time via a smartphone app and bluetooth con-
nected BG monitor. This service is accessible

at and equipped with
a version of the described AdaBoost Regressor
at . It is on the

agenda to use smartphone capabilities to in-
corporate features with little or no cost to the
user such as step counting and (food) purchase
tracking.

7 CONCLUSION

This work has shown a set of new classification
and regression problems relevant to diabetes
care and made preliminary attempts at solving
them. In the process, we have also suggested
some new directions for study in the space of
diabetes care with a focus on economic and
quality-of-life feasibility. The author hopes that
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they have provided some insight into the diffi- [11] F Sthl. Diabetes Mellitus Glucose Prediction

culty and potential in this domain of problems by Linear and Bayesian Ensemble Modeling.
dh that d ioht find int t (2012, December). PHd Thesis. Available:
and hopes that readers might find some Interes http:/ /www.control.lth.se/documents /2012 /stahl2012lic.pdf

in it as well.

[12] Nishimura R, LaPorte RE, Dorman JS, et al. Mortality
Trends in Type 1 Diabetes: The Allegheny County
(Pennsylvania) Registry 1965-1999. Diabetes Care 2001; 24:
823-7
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