Second Project: jName;..

Santiago, Gamboa Ramirez
santigrl7@gmail.com

Juan Esteban, Navarro Camacho
jnavcamacho@gmail.com

April 16, 2016

Abstract

This project will discuss the usage of the logical programming lan-
guage called Prolog to solve a diabolic magic squares made with 4 by
4 squares and Python as a front-end. A diabolic magic squares are
matrix of 4 rows and 4 columns which have unique numbers on each
cell from 1 to 16. This project will implement the solution of this
problem using logical deduction.

1 Introduction

A diabolic magic squares are an special matrix made by n rows and n columns
and each cell of this matrix has an unique value from 1 to n?. This matrix in
some cases has an interesting behavior. This behavior makes to this matrix
have some mathematical properties; form example the sum of each cell to
make a row has the same result as the others.

The diagonals have the same sum like the rows, the sum of all values from a
column have the same value as the rows or diagonal have.

15

24

17

23

7

16

o)

14

20

4

13

22

6

12

21

10

19

3

For example:

9

Figure 1:

2 Objectives

18

4 Requirements

2

3 Problem description

2

11

25

Making queries into a table.

On the image [1]it shows a diagonal magic square, and if the user make a sum
of the cells of some rows or some column the result will be the same for both
expressions. There are more conditions that proves this square as magic or

For the implementation of this project, its necessary to create 2 programs
that will be interacting with each other.

e A Frontend, which purpose will be to interact with the user , take care
of I/O operations and communicate with the backend.

Figure 2: Command to run the program

Figure 3: This is the main window of the program, here the user can see the
grid to insert a square, also has the option to ask for an amount of Diabolic
Magic Squares

e A backend, where all the diabolic magic square resolution is going to
happen.

e This backend will be receiving the entries for the execution of the pred-
icates.

e The Frontend will be developed in any language chosen by the student,
it has to connect with the backend (Prolog) to pass over to the Prolog
program the operation requested by the user.

5 User Guide

The next series of images illustrate the use of the program. The following
images show the different kind of errors that can occur.

Diabolic Magic Squar

=

oOEMACm

31117

'8 16110
1312115~

)
]
5]
=
=
B
o

Figure 6: This message show when the button ”verify” is pressed.

Diabolic Magic Squar

=

oOEMACm

)
]
5]
|
=
B
o

Figure 9: This message show when the button ”show” is pressed.

<)
w
)
=
ﬂ<
()

Squa
1a/3how l

Show all Squares

Figure 11: This is a warning for the user in order to ask for patience when
the button "show” is pressed.

18 10[15 /81114 18 1312
121336 121327 15103 6
720169 6[3169 45169
1a/11]5 4 1510[5 4 1a[11]2 7

112714 1)147 12 1156 |12
15694 8[112 13 8103 13
103165 105|163 115|162
8132 11 154[96 14497
2|7 1213 2[1)1a7 2165 11
16963 16/5(a0 709414
541510 3[10156 12/ 6 151

111418 138112 133 |10 8

310/ 16| 3[13126 45|19
61549 62(79 15103 6
121147 51144 18 1312
138|112 108115 1a[11]2 7

_eack |

Figure 12: This window is displayed when the button "show” is pressed and
the value is correct.

Figure 13: Here the program asks to the user if he wants to continue to a
building part of the program.

SWI Prolog

Figure 14: SWI-Prolog environment on GNU-Linux

6 Development environment

6.1 SWI-Prolog

This framework offers and easy way to implement prolog queries in termi-
nal, it is compatible with the most common programming languages and
development environments like Java, Python and Netbeans as an IDE.

6.2 Python with PySwip

PySWIP requires SWI-Prolog as a shared library to make an interface to
make queries from Python to Prolog.

To install PySwip this tutorial will show how to: https://pyswip.googlecode.
com/svn-history/r129/trunk/INSTALL

https://pyswip.googlecode.com/svn-history/r129/trunk/INSTALL
https://pyswip.googlecode.com/svn-history/r129/trunk/INSTALL

6.3 JPL for Java

JPL is a set of Java classes and C functions providing an interface between
Java and Prolog. This framework uses Java Native Interface to work with
the prolog queries. This framework has to types of interfaces, the low level
and the high level.

e Low Level: For C and C++ development.

e High Level: For Java programmers.

6.4 NetBeans Java

There is another option to make queries to from from another programming
language, this language is called Java.For Netbeans IDEs, after install jpl
libraries the user must to include the .jar files.

7 Program design

The program consists of two main parts, the first is the logical part respon-
sible for calculating the Diabolic Magic Squares, it is composed of a function
that checks whether a list is a Diabolic Magic Square and returns true or
false. Part two consists fronted, or user interface, which query logic to the
outcome of the question asked by the user. It also has the function of dis-
playing pictures, which are displayed in a new window, depending on the
amount desired by the user.

8 Data Structures and functions

8.1 User Interface

class guiDMsquares: with this class we manage the windows and create all
the interface

function verify: this function valid all the entries and if these are right con-
catenates the values.

function suqgares1-10: Here is where we construct the squares and place them
in the new window, this function also calls the query to ask prolog for the

squares.

function error: We manage the errors by a code, in the message is the causes
of the error and we unify the errors in one function.

function random: With this processor we fill all the grid with random values.
function clear: It is in charge to clean the values of the entries grid.

8.2 Diabolic.pl

function diabolic: This function is called when we need to verify a list.
function diabolico: This other function return all the possible Diabolic Magic
Squares.

9 Student activity log

’ Date ‘ Juan’s Task Description ‘ Spe
8/April /2016 Design and understanding the project 4
10/April /2016 Deciding which language is better for the project 3
11/April /2016 Understanding prolog using swi prolog 2
12/April /2016 Research diabolic magic squares, how to verify one 14
13/April /2016 Design the principal menu with Santiago and simple functions 1C
14/April/2016 Research how to use Java jpl library 4
15/April/2016 | Fixing errors with pyswip, figure it out how to communicate in other way. 4

Total Y

’ Date \ Santiago’s Task Description
06/April /2016 Installing swi prolog and looking for othe
07/April /2016 Try some functions. Install pyswip and
09/April/2016 Create a simple interface
10/April/2016 | Meeting with Juan to define the structures of the table. Scheme and register. S
11/April/2016 Create a method that gets user entries and pu
12/April /2016 Error connecting python and swi pre
14/April/2016 Trying to install java jpl for proje
15/April /2016 finish the interface and doing documer

10 Project final status

This program has successfully verify and query for less than 26 squares. The
communication between python and prolog is slow and take a while. The
interface has a good validation of the entries and give feedback or message
errors to the user.

10.1 Bugs

If you consult for a number of squares and them try to verify another square
the query fails.

10.2 Not resolved Problems

Show all, the method to show all the possible solutions for a Diabolic Magic
Square stops when solves the 26th square.

10.2.1 Casting List from Prolog to Python

This is the main not resolved problem:
When the user types to get a Diabolic Magic Square using Prolog from ter-
minal the result will be like this example. Getting a diabolic magic square

$ prolog diabolic.pl

$?-diabolico(X).

$ X = [1, 8, 10, 15, 12, 13, 3, 6, 7|...] [write]

$ X =1[1, 8, 10, 15, 12, 13, 3, 6, 7, 2, 16, 9, 14, 11, 5, 4]

But in python when the user wants to include this line into a query on
Python, the result will be. Print on Python

$ python test.py
>> {X = Variable (16), Variable(16),...}
>>

This means that prolog array of int can’t be displayed using a normal casting.

10.2.2 Including .jar Import to Link Java and Prolog

After intalling swi-prolog on linux, netbeans can’t link the jar to the file.

10

10.2.3 Pwsip install on Linux Mint

The make file to install the swi-prolog made some erros on Juan’s computer,
just Santiago’s can run pyswip with python

11 Conclusions

There is no enough updated documentation to the usage of Python with
Pyswip for complex Prolog and Python Applications. It means for complex
projects Python is not a good option.

12 Suggestions and recommendations

For JPI and Java development. As the site web says: currently JPL only
supports the embedding of a Prolog engine within the Java VM. For many
further versions this API will be available for C and C++ development.

Python and PySwip are good options to implement queries if the code
on prolog has the facts defined, but it the user wants to implement a query
with a prolog returned variables is not warrantied the success of the app.

If the user wants to implement Netbeans and JPL: Ensure that the Linux
distribution doesn’t have OpenJDK intalled this is because JPL works with
JDK private version, the non-free.

To install the correctly version of JDK the user needs to go the the fol-
lowing web site and follow every step described there. This web site has the
install guide for x86 and x64 architectures for GNU-Linux.

Prolog Mode for Emacs: This is and IDE to manage and debug prolog
applications and brings with some tools to understand and read efficiently
prolog syntax. Its debug plugin is useful to follow the track of the logic fact
deduction.

11

13

References

Itself, have. "Have A Function In Scheme Return Value (Or Do Some-
thing Else) And Call Itself’. Stackoverflow.com. N.p., 2016. Web. 8
Apr. 2016.

Boyer, C. ”Multimagie News.” Apr. 4, 2006. http://www.multimagie.
com//English/News0604.htm.

Sloane, N. J. A. Sequence A027567 in " The On-Line Encyclopedia of
Integer Sequences.”

Rosser, J. B. and Walker, R. J. "The Algebraic Theory of Diabolical
Squares.” Duke Math. J. 5, 705-728, 1939.

Kraitchik, M. ”Panmagic Squares.” §7.9 in Mathematical Recreations.
New York: W. W. Norton, pp. 143 and 174-176, 1942.

Hunter, J. A. H. and Madachy, J. S. ”Mystic Arrays.” Ch. 3 in Math-
ematical Diversions. New York: Dover, pp. 24-25, 1975.

Gardner, M. ”Magic Squares and Cubes.” Ch. 17 in Time Travel and
Other Mathematical Bewilderments. New York: W. H. Freeman, pp.
213-225, 1988.

Gardner, M. The Second Scientific American Book of Mathematical
Puzzles Diversions: A New Selection. New York: Simon and Schuster,
pp. 135-137, 1961.

12

http://www.multimagie.com//English/News0604.htm.
http://www.multimagie.com//English/News0604.htm.

	Introduction
	Objectives
	Problem description
	Requirements
	User Guide
	Development environment
	SWI-Prolog
	Python with PySwip
	JPL for Java
	NetBeans Java

	Program design
	Data Structures and functions
	User Interface
	Diabolic.pl

	Student activity log
	Project final status
	Bugs
	Not resolved Problems
	Casting List from Prolog to Python
	Including .jar Import to Link Java and Prolog
	Pwsip install on Linux Mint

	Conclusions
	Suggestions and recommendations
	References

