
Solving N-Queens

Rodolfo Lepe & Gerardo Velasco

1630048 & 1225061

Abstract

Through the modification of the kernel on a Ubuntu system, we managed to solve the
n-Queens problem after changing the default time-slice, swappiness, latency and wakeup-
granularity to different values and testing the problem.

1 Introduction
Linux utilizes the Completely Fair Scheduling or CFS algorithm, which is an implementation of
the Weighted fair queueing or WFQ. It consists of the CPU system starting with CFS time-slices
the total CPU in runnable threads. The CFS looks to maximize the CPU utilization and the
interactive performance.

The CFS scheduler calculates the timeslices for a task a moment before it is scheduled for its
execution. Its lenght is variable and it totally depends on its priority and the load of the running
queue.

The scheduler has the notion of every tasks virtually having the same runtime, but in reality
the virtual runtime is a normalized value.

We will be running a process called n-queens, which is a benchmark that works with the famous
problem of the 8 queens on a chess board.

2 Theoretical Framework
The computer we used was one with the following specs Memory 1.9 GB, Processor Intel Pentium
(R) D CPU 2.80 GHz x 2, Graphics Gallium 0.4 on ATI RC410, OS Type 64-bit, Disk 490.1 GB.
We used the Linux Ubuntu 16.04 operating system, it is a 64-bit OS. The Kernel is a 4.4.0-
42-generic(x86_64), the desktop is the Unity 7.4.0, the display server is the X server 1.18.3.
The displays driver radeon 7.7.0, an OpenGL:2.1 Mesa11-2-0 Gallium 0.4 Compiler: GCC 5.4.0
20160609, a File system: ext4, and it has a screen resolution of 1266x768. We tried to change some
aspects of the Kernel so we could spot differences while running the benchmark called N-Queens.

The Swappiness in the Linux kernel is the responsible to control the relative weight for swapping
out runtime memory. Its default value is 60, and setting it to a different value will affect other
components such as latency. Latency is the interval between a stimulus and a response. Granularity
depends on how many pieces can you distinguish from one another on a system. Timeslice is another
name for preemtive multitasking.

We will be using an old computer, so if we break the Kernel we will not regret it as much. Our
tests will be longer for the same reason, we will be using a CPU with Pentium, so patience is a
key aspect.

3 Objective
To find a way by changing the values of several Kernel components to use a benchmark and generate
a better overall process for it to be utilized. We will try to find a way to optimize Linux by making
trials with the N-Queens benchmark.

1



4 Justification
The N-queens is one of the benchmarks that the code accepted, it is a simple program and we can
try it several times with a low wait time. Every run takes approximately 5 minutes to load and it
usually repeats it 3 times to get a better average time.

We know the basic concepts of how swappiness, latency, timeslice and granularity work, so we
can change the values to expect different results.

N-queens is a simple algorithm that we already knew how it works, so we can have a deeper
understanding of the overall situation.

5 Development
In order to test our theory, we used the platform Intel Pentium (R) D CPU 2.80 GHz x 2m which
is kind of old, but it will do the trick just fine. The main characteristics of the computer are
described in the Theoretical Framework.

The operating system that we used is the Ubuntu 16.04, the description of the system is listed
in the Ubuntu project site home page (http://www.ubuntu..com).

We decided to use the benchmark called N-Queens. This benchmark solves the chess problem
of putting N queens on an N x N board so that no queen can attack each other, this problem
usually uses a recursive search for a placement of the queens that meets the correct conditions.
The first reference of this problem is in a German magazine by Max Bezzel, this was on the year
1848, later it was studied by Gauss in the 1850, this after reading an article by Franz Nauck, who
discovered all 92 solutions to the 8-Queen problem. Its most common use is for undergraduate
students, because they need to understand and program a particular kind of algorithm.

The variables that we changed were the ones mentioned above, and we went all over the field
with those variables. The table shows the initial values of those variables:

Variable Initial value
vm.swappiness 40

kernel.sched_latency_ns 12000000
kernel.sched_wakeup_granularity_ns 2000000

kernel.sched_rr_timeslice_ns 25

6 Results
The results after modifying the different variables are shown below.

As seen in the tables and graph not much changed, you can almost say, that nothing really
changed (except that one value that went of the charts, but we believe that was just a malfunction
of the benchmark or the computer and not really a number that we care about) All the times are
in seconds and de standard deviation is in percentages. If we take in consideration that result, we
can see in the graphic that we have a function that looks pretty similar to a logarithmic function,
but we cannot be sure because we don’t have enough data. We went all over the board with the
range of the variables, making all kind of different combinations, but it didn’t matter how different
they were, how much we tried, or how many times we did the same test, the time the process took
to finish was almost the same, never varying for more than 1 second. We spent more than 6 hours
testing and we could not find any result that varied a lot from the common results.

7 Conclusion
After this case of study we can safely conclude that our theory was wrong and changing the
variables, in a computer that utilizes Intel Pentium (R) D CPU 2.80 GHz x 2m, that we picked
won’t affect the performance of a process such as n-queens.

The n-queens resulted to be a simple process, that is not affected by any of the Kernel com-
ponents we decided to evaluate. We can refute the initial hypothesis, and we can reassure that
any legar number changing latency, timeslice, granularity and swappiness will leave the process the
same.

2



Figure 1: Modified values.

3



Figure 2: Modified values.

4



Figure 3: Latency vs. Time.

Figure 4: Granularity vs. Time.

5



We also found that the standard error changed a lot during the testing progress. sometimes it
went up until 6%. Even though, we still have the same average runtimes. the smallest time for the
process to be done was 274 seconds, and the time that it took the most it was 281.

Future work could be to look for a different benchmark, one that causes more stress to the
computer, so that we can prove if changing those variables will keep the program running at the
same speed regardless of the process. Or our future work could be to look for a variable that
actually changes the performance of the n-queens.

8 Bibliography

References
[1] Dealy, Sheldon. Common Search Strategies and Heuristics With Respect to the N-Queens

Problem. From http://www.cs.unm.edu/~sdealy/nqueens_presentation.pdf

[2] Jacek Kobus and Rafał Szklarski. Completely Fair Scheduler and its tuning. from
http://fizyka.umk.pl/~jkob/prace-mag/cfs-tuning.pdf

[3] Silberschatz, A., Galvin, P. B., & Gagne, G. (2005). Operating system concepts. Hoboken, NJ:
J. Wiley & Sons.

[4] Sin, Chandandeep. Completely Fair Schedule. Linux Journal. from
http://www.linuxjournal.com/magazine/completely-fair-scheduler

[5] Swappiness. from https://sites.google.com/site/tipsandtricksforubuntu/system-
tips/swappiness

[6] The Linux / Kernel organization. from https://www.kernel.org/category/about.html

[7] Tips and tricks for Ubuntu. Turning the tasks scheduler. from Chapter 14. Tuning the Task
Scheduler

6


	Introduction
	Theoretical Framework
	Objective
	Justification
	Development
	Results
	Conclusion
	Bibliography

