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INTRODUCTION
In 1929, von Neumann and Wigner claimed [1] that
the single-particle Schrödinger equation could pos-
sess isolated eigenvalues embedded in the continuum
of positive energy states. They offered a constructive
method based upon amplitude modulation of a free-
particle wave function and leading to a localized (i.e.,
integrable) eigenfunction and a local potential which
produces it. The potential was bounded and could
be made to vanish at infinity. Diffractive interference
was proposed as the reason such localized positive-
energy states could exist.

OBJECTIVES
The aim of Stillinger and Herricks‘s paper [2] was to
construct quantum-mechanical examples with local
potentials that allow bound eigenstates embedded in
the dense continuum of scattering states.

In the light of the Further Examples section, attention
is focused on quantitative interpretation of real tun-
neling phenomena, and on the existence of continuum
bound states in atoms and molecules.

GRAPHICAL RESULTS

Figure 1: Potential-energy function for particle energy l. [2]
Classically, the particle would have been trapped inside the
potential barrier since its energy is lower than the barrier.

Figure 2: Potential-energy function with energy 4. [2] This
energy exceeds the maximum value for the potential, so the
particle could not be trapped even by classical mechanics.
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ONGOING RESEARCH
The very existence of Bound States in Continuum defies conventional wisdom. Although first proposed in
quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic
waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide
range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and
fibres, quantum dots, graphene and topological insulators.

FURTHER EXAMPLES
These examples involve just single particles, further-
more, they can be reduced to one-dimensional form
by virtue of separability:

A Higher angular momentum: for a free-particle
state with total-angular-momentum quantum
number l; ψ(l) = fl(r)Rl(kr)Ylm(θ, φ)

B Variable dimensionality: ground state of the he-
lium isoelectronic sequence for variable dimen-
sionality.

C Coulomb interactions (only for repulsive poten-
tials)

D Constant electric field (potential linear in dis-
placement along the field)

The non-separable case is given by the Doubly Ex-
cited atom: a model "two-electron" atom which, with
suitable interaction between the electrons, will have a
doubly excited state with infinite lifetime (within the
Schrödinger description).

DISCUSSION
The eigenvalue for the preceding positive-energy
bound state can be moved up or down within the
continuum merely by varying the wave vector k.
Equation 6 specifies the way in which V (r) must
deform to continue supporting its bound state nature.

The examples of continuum bound states constructed
by Stillinger and Herrick [2] sent a warning against
quantitative over-interpretation of the tunneling phe-
nomena:

1. Cold emission of electrons from metals, under
the influence of strong electric fields,

2. Alpha decay rates of radioactive nuclei,

3. Tunneling through films between adjacent solid
phases.

If a given physical system were to possess a poten-
tial close to the subspace of potentials with continuum
bound states, then its tunneling rate would be anoma-
lously small.

DEFINITIONS
Bound state = a bound state is a special quantum
state of a particle subject to a potential such that the
particle has a tendency to remain localized in one or
more regions of space.

Continuum = matter continuously distributed and
fills the entire region of space it occupies. Here,
continuum is considered to be wave functions with
positive energies, compared to bound states with
negative energies.

Node = a point along a standing wave where the
wave has minimum (usually vanishing) amplitude.

Separability = the wave function can be written as a
direct product of individual wave functions. Usually
the case for non-interacting particles.

VON NEUMANN-WIGNER METHOD
In natural units, the single-particle Schrödinger wave
equation is to be solved in infinite three-space:(
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Momentarily, we consider only bounded potentials V,
and which are local operators in position representa-
tion. Eqn. 1 can be reversed to obtain the potential,
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which implies that the nodes of the wave function ψ
must be matched by vanishing of its Laplacian. For
V = 0, the free particle S-wave,

ψ0(r) = sin (kr)/kr (3)

satisfies the above with energy eigenvalue E = k2/2.
To obtain potentials yielding bounded states, consider
an amplitude modulation f(r) and ψ(r) = ψ0(r)f(r).
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Further constrains are needed for the envelop func-
tion f(r) to keep the potential bounded. The specific
choice suggested by von Neumann and Wigner [1] is:

f(r) = {A2 + [2kr − sin 2kr]2}−1 (5)

where A is an arbitrary nonzero constant. Thereby:

(6)
V (r) = − 64k2A2 sin4(kr)

[A2 + (2kr − sin(2kr)2]2

+
48k2 sin4 kr − 8k2(2kr − sin 2kr)

A2 + (2kr − sin 2kr)2

Near the origin, the function reduces to:

V (r) = (80/3A2 − 64)k2(kr)4 +O((kr)6) (7)

while its large r form is expressed as:

V (r) ∼ −8k2(sin 2kr)/2kr (8)


