JFM IATEX submission template

Alan N. Jones ${ }^{1} \dagger$, H.-C. Smith ${ }^{1}$ and J.Q. Long ${ }^{2}$
${ }^{1}$ STM Journals, Cambridge University Press, The Printing House, Shaftesbury Road, Cambridge CB2 8BS, UK
${ }^{2}$ DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
(Received $x x$; revised $x x$; accepted $x x$)

This file contains information for authors planning to submit a paper to the Journal of Fluid Mechanics. The document was generated in LATEX using the JFM class file and supporting files provided on the JFM website here, and the source files can be used as a template for submissions (please note that this is mandatory for JFM Rapids). Minor modifications were made to correct errors and missing packages in the template, and are noted in line comments by "EPFmod". Full author instructions can be found on the JFM website. The present paragraph appears in the abstract environment. All papers should feature a singleparagraph abstract of no more than 250 words which must not spill onto the seond page of the manuscript. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract. Dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract dummy text of abstract.

Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see Keyword PDF for the full list). Other classifications will be added at the same time.

MSC Codes (Optional) Please enter your MSC Codes here

1. First-order heading

This is an example of dummy text. This is

[^0]an example of dummy text. This is an example of dummy text.

1.1. Second-order Heading

This is an example of dummy text. This is an example of dummy text.

1.1.1. Third-order Heading

This is an example of dummy text. This is an example of dummy text.

2. Figures and Tables

2.1. Figures

Each figure should be accompanied by a single caption, to appear beneath, and must be cited in the text. Figures should appear in the order in which they are first mentioned in the text. For example see figures 1 and 2.

Figure 1: Trapped-mode wavenumbers, $k d$, plotted against a / d for three ellipses:

$$
\text { —, } b / a=1 ; \cdots \cdots, b / a=1.5 \text {. }
$$

This is an example of dummy text. This is an example of dummy text.

2.2. Tables

Tables, however small, must be numbered sequentially in the order in which they are mentioned in the text. Words table 1, table 2 should be lower case throughout. See table 1 for an example.

This is an example of dummy text. This is an example of dummy

Figure 2: The features of the four possible modes corresponding to (a) periodic and (b) half-periodic solutions.

a / d	$M=4$	$M=8$	Callan et al.
0.1	1.56905	1.56	1.56904
0.3	1.50484	1.504	1.50484
0.55	1.39128	1.391	1.39131
0.7	1.32281	10.322	1.32288
0.913	1.34479	100.351	1.35185

Table 1: Values of $k d$ at which trapped modes occur when $\rho(\theta)=a$.
text. This is an example of dummy text.

3. Notation and style

Generally any queries concerning notation and journal style can be answered by viewing recent pages in the Journal. However, the following guide provides the key points to note. It is expected that Journal style and mathematical notation will be followed, and authors should take care to define all variables or entities upon first use. Also note that footnotes are not normally accepted. Abbreviations must be defined at first use, glossaries or lists/tables of abbreviations are not permitted.

3.1. Mathematical notation

3.1.1. Setting variables, functions, vectors, matrices etc

- Italic font should be used for denoting variables, with multiple-letter symbols avoided except in the case of dimensionless numbers such as $R e, P r$ and $P e$ (Reynolds, Prandtl, and Péclet numbers respectively, which are defined as \backslash Rey, $\backslash \operatorname{Pran}$ and $\backslash \operatorname{Pen}$ in the template).
- Upright Roman font (or upright Greek where appropriate) should be used for:
(i) (vI) label, e.g. T. t (transpose)
(ii) Fixed operators: $\sin , \log , \mathrm{d}, \Delta$, \exp etc.
(iii) Constants: $\mathrm{i}(\sqrt{-1}), \pi$ (defined as \backslash upi), e etc.
(iv) Special Functions: Ai, Bi (Airy functions, defined as $\backslash \mathrm{Ai}$ and $\backslash \mathrm{Bi}$), Re (real part, defined as \backslash Real), Im (imaginary part, defined as \backslash Imag), etc.
(v) Physical units: cm, s, etc.
(vi) Abbreviations: c.c. (complex conjugate), h.o.t. (higher-order terms), DNS, etc.
- Bold italic font (or bold sloping Greek) should be used for vectors (with the centred dot for a scalar product also in bold): $\boldsymbol{i} \cdot \boldsymbol{j}$
- Bold sloping sans serif font, defined by the \mathsfbi macro, should be used for tensors and matrices: \boldsymbol{D}
- Calligraphic font (for example \mathcal{G}, \mathcal{R}) can be used as an alternative to italic when the same letter denotes a different quantity use \backslash mathcal in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$)

3.1.2. Other symbols

Large numbers that are not scientific powers should not include commas, but should use a non-breaking space, and use the form 1600 or 16000 or 160000 . Use O to denote 'of the order of', not the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} O$.
The product symbol (\times) should only be used to denote multiplication where an equation is broken over more than one line, to denote a cross product, or between numbers . The symbol should not be used, except to denote a scalar product of vectors specifically.

3.1.3. Example Equations

This section contains sample equations in the JFM style. Please refer to the ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source file for examples of how to display such equations in your manuscript.

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G_{s}=\left(\nabla^{2}+k^{2}\right) G_{a}=0 \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{v}=0, \quad \nabla^{2} P=\boldsymbol{\nabla} \cdot(\boldsymbol{v} \times \boldsymbol{w}) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
G_{s}, G_{a} \sim 1 /(2 \pi) \ln r \quad \text { as } \quad r \equiv|P-Q| \rightarrow 0 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{1}{2 \pi} \int_{0}^{\infty} \gamma^{-1}[\exp (-k \gamma|y-\eta|)+\exp (-k \gamma(2 d-y-\eta))] \cos k(x-\xi) t \mathrm{~d} t, \quad 0<y, \quad \eta<d \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
G=-\frac{1}{4} \mathrm{i}\left(H_{0}(k r)+H_{0}\left(k r_{1}\right)\right)-\frac{1}{\pi} f_{0}^{\infty} \frac{\mathrm{e}^{-k \gamma d}}{\gamma \sinh k \gamma d} \cosh k \gamma(d-y) \cosh k \gamma(d-\eta) \tag{3.7}
\end{equation*}
$$

Note that when equations are included in definitions, it may be suitable to render them in line, rather than in the equation environment: $\boldsymbol{n}_{q}=\left(-y^{\prime}(\theta), x^{\prime}(\theta)\right) / w(\theta)$. Now $G_{a}=$ $\frac{1}{4} Y_{0}(k r)+\widetilde{G_{a}}$ where $r=\left\{[x(\theta)-x(\psi)]^{2}+[y(\theta)-y(\psi)]^{2}\right\}^{1 / 2}$ and $\widetilde{G_{a}}$ is regular as $k r \rightarrow 0$. However, any fractions displayed like this, other than $\frac{1}{2}$ or $\frac{1}{4}$, must be written on the line, and not stacked (ie $1 / 3$).

$$
\begin{align*}
\frac{\partial}{\partial n_{q}}\left(\frac{1}{4} Y_{0}(k r)\right) & \sim \frac{1}{4 \pi w^{3}(\theta)}\left[x^{\prime \prime}(\theta) y^{\prime}(\theta)-y^{\prime \prime}(\theta) x^{\prime}(\theta)\right] \\
& =\frac{1}{4 \pi w^{3}(\theta)}\left[\rho^{\prime}(\theta) \rho^{\prime \prime}(\theta)-\rho^{2}(\theta)-2 \rho^{\prime 2}(\theta)\right] \quad \text { as } \quad k r \rightarrow 0 \tag{3.8}\\
& \frac{1}{2} \phi_{i}=\frac{\pi}{M} \sum_{j=1}^{M} \phi_{j} K_{i j}^{a} w_{j}, \quad i=1, \ldots, M \tag{3.9}
\end{align*}
$$

where

$$
\begin{gather*}
K_{i j}^{a}= \begin{cases}\partial G_{a}\left(\theta_{i}, \theta_{j}\right) / \partial n_{q}, & i \neq j \\
\partial \widetilde{G_{a}}\left(\theta_{i}, \theta_{i}\right) / \partial n_{q}+\left[\rho_{i}^{\prime} \rho_{i}^{\prime \prime}-\rho_{i}^{2}-2 \rho_{i}^{\prime 2}\right] / 4 \pi w_{i}^{3}, & i=j\end{cases} \tag{3.10}\\
\rho_{l}=\lim _{\zeta \rightarrow Z_{l}^{-(x)}} \rho(x, \zeta), \quad \rho_{u}=\lim _{\zeta \rightarrow Z_{u}^{+}(x)} \rho(x, \zeta) \tag{3.11a,b}
\end{gather*}
$$

$$
\begin{equation*}
\left(\rho(x, \zeta), \phi_{\zeta \zeta}(x, \zeta)\right)=\left(\rho_{0}, N_{0}\right) \quad \text { for } \quad Z_{l}(x)<\zeta<Z_{u}(x) \tag{3.12}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\tau_{i j} & =\left({\overline{\bar{u}} \bar{u}_{j}}-\bar{u}_{i} \bar{u}_{j}\right)+\left(\overline{\bar{u}_{i} u_{j}^{S G S}+u_{i}^{S G S} \bar{u}_{j}}\right)+\overline{u_{i}^{S G S} u_{j}^{S G S}} \\
\tau_{j}^{\theta} & =\left(\overline{\bar{u}_{j} \bar{\theta}}-\bar{u}_{j} \bar{\theta}\right)+\left(\overline{\bar{u}_{j} \theta^{S G S}+u_{j}^{S G S}} \bar{\theta}\right. \tag{3.13b}
\end{array}\right)+\overline{u_{j}^{S G S} \theta^{S G S}} . ~ \$
$$

$$
\boldsymbol{Q}_{C}=\left[\begin{array}{ccccc}
-\omega^{-2} V_{w}^{\prime} & -\left(\alpha^{t} \omega\right)^{-1} & 0 & 0 & 0 \tag{3.14}\\
\frac{\beta}{\alpha \omega^{2}} V_{w}^{\prime} & 0 & 0 & 0 & \mathrm{i} \omega^{-1} \\
\mathrm{i} \omega^{-1} & 0 & 0 & 0 & 0 \\
\mathrm{i} R_{\delta}^{-1}\left(\alpha^{t}+\omega^{-1} V_{w}^{\prime \prime}\right) & 0 & -\left(\mathrm{i} \alpha^{t} R_{\delta}\right)^{-1} & 0 & 0 \\
\frac{\mathrm{i} \beta}{\alpha \omega} R_{\delta}^{-1} V_{w}^{\prime \prime} & 0 & 0 & 0 & 0 \\
\left(\mathrm{i} \alpha^{t}\right)^{-1} V_{w}^{\prime} & \left(3 R_{\delta}^{-1}+c^{t}\left(\mathrm{i} \alpha^{t}\right)^{-1}\right) & 0 & -\left(\alpha^{t}\right)^{-2} R_{\delta}^{-1} & 0
\end{array}\right] .
$$

$$
\begin{equation*}
\boldsymbol{\eta}^{t}=\hat{\boldsymbol{\eta}}^{t} \exp \left[\mathrm{i}\left(\alpha^{t} x_{1}^{t}-\omega t\right)\right] \tag{3.15}
\end{equation*}
$$

where $\hat{\boldsymbol{\eta}}^{t}=\boldsymbol{b} \exp \left(\mathrm{i} \gamma x_{3}^{t}\right)$.

$$
\begin{equation*}
\operatorname{Det}\left[\rho \omega^{2} \delta_{p s}-C_{p q r s}^{t} k_{q}^{t} k_{r}^{t}\right]=0 \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{f}(\theta, \psi)=(g(\psi) \cos \theta, g(\psi) \sin \theta, f(\psi)) \tag{3.18}
\end{equation*}
$$

$$
\begin{gather*}
f\left(\psi_{1}\right)=\frac{3 b}{\pi\left[2\left(a+b \cos \psi_{1}\right)\right]^{3 / 2}} \int_{0}^{2 \pi} \frac{\left(\sin \psi_{1}-\sin \psi\right)(a+b \cos \psi)^{1 / 2}}{\left[1-\cos \left(\psi_{1}-\psi\right)\right](2+\alpha)^{1 / 2}} \mathrm{~d} x \tag{3.19}\\
g\left(\psi_{1}\right)= \\
\frac{3}{\pi\left[2\left(a+b \cos \psi_{1}\right)\right]^{3 / 2}} \int_{0}^{2 \pi}\left(\frac{a+b \cos \psi}{2+\alpha}\right)^{1 / 2}\left\{f(\psi)\left[\left(\cos \psi_{1}-b \beta_{1}\right) S+\beta_{1} P\right]\right. \\
\times \frac{\sin \psi_{1}-\sin \psi}{1-\cos \left(\psi_{1}-\psi\right)}+g(\psi)\left[\left(2+\alpha-\frac{\left(\sin \psi_{1}-\sin \psi\right)^{2}}{1-\cos \left(\psi-\psi_{1}\right)}-b^{2} \gamma\right) S\right. \tag{3.20}\\
\left.\left.+\left(b^{2} \cos \psi_{1} \gamma-\frac{a}{b} \alpha\right) F\left(\frac{1}{2} \pi, \delta\right)-(2+\alpha) \cos \psi_{1} E\left(\frac{1}{2} \pi, \delta\right)\right]\right\} \mathrm{d} \psi \tag{3.21}\\
\alpha=\alpha\left(\psi, \psi_{1}\right)=\frac{b^{2}\left[1-\cos \left(\psi-\psi_{1}\right)\right]}{(a+b \cos \psi)\left(a+b \cos \psi_{1}\right)}, \quad \beta-\beta\left(\psi, \psi_{1}\right)=\frac{1-\cos \left(\psi-\psi_{1}\right)}{a+b \cos \psi} \tag{3.22}\\
H(0)=\frac{\epsilon \bar{C}_{v}}{\tilde{v}_{T}^{1 / 2}(1-\beta)}, \quad H^{\prime}(0)=-1+\epsilon^{2 / 3} \bar{C}_{u}+\epsilon \hat{C}_{u}^{\prime} ; \\
H^{\prime \prime}(0)=\frac{\epsilon u_{*}^{2}}{\tilde{v}_{T}^{1 / 2} u_{P}^{2}}, \quad H^{\prime}(\infty)=0 .
\end{gather*}
$$

Lemma 1. Let $f(z)$ be a trial Batchelor (1971, pp. 231-232) function defined on [0, 1]. Let Λ_{1} denote the ground-state eigenvalue for $-\mathrm{d}^{2} g / \mathrm{d} z^{2}=\Lambda g$, where g must satisfy $\pm \mathrm{d} g / \mathrm{d} z+$
$\alpha g=0$ at $z=0,1$ for some non-negative constant α. Then for any f that is not identically zero we have

$$
\begin{equation*}
\frac{\alpha\left(f^{2}(0)+f^{2}(1)\right)+\int_{0}^{1}\left(\frac{\mathrm{~d} f}{\mathrm{~d} z}\right)^{2} \mathrm{~d} z}{\int_{0}^{1} f^{2} \mathrm{~d} z} \geqslant \Lambda_{1} \geqslant\left(\frac{-\alpha+\left(\alpha^{2}+8 \pi^{2} \alpha\right)^{1 / 2}}{4 \pi}\right)^{2} \tag{3.23}
\end{equation*}
$$

Corollary 1. Any non-zero trial function f which satisfies the boundary condition $f(0)=f(1)=0$ always satisfies

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{\mathrm{~d} f}{\mathrm{~d} z}\right)^{2} \mathrm{~d} z \tag{3.24}
\end{equation*}
$$

4. Citations and references

All papers included in the References section must be cited in the article, and vice versa. Citations should be included as, for example "It has been shown (Rogallo 1981) that..." (using the \citep command, part of the natbib package) "recent work by Dennis (1985)..." (using \citet). The natbib package can be used to generate citation variations, as shown below.
\citet[pp. 2-4]\{Hwang70\}:
Hwang \& Tuck (1970, pp. 2-4)
\citep[p. 6]\{Worster92\}:
(Worster 1992, p. 6)
\citep[see][]\{Koch83, Lee71, Linton92\}:
(see Koch 1983; Lee 1971; Linton \& Evans 1992)
\citep[see][p. 18]\{Martin80\}:
(see Martin 1980, p. 18)
\citep\{Brownell04, Brownell07, Ursell50, Wijngaarden68,Miller91\}:
(Brownell \& Su 2004, 2007; Ursell 1950; van Wijngaarden 1968; Miller 1991)
(Briukhanov et al. 1967)
Bouguet (2008)
(Joseph \& Saut 1990)
The References section can either be built from individual \bibitem commands, or can be built using BibTex. The BibTex files used to generate the references in this document can be found in the JFM LATEX template files folder provided on the website here.

Where there are up to ten authors, all authors' names should be given in the reference list. Where there are more than ten authors, only the first name should appear, followed by et al.
Supplementary data. Supplementary material and movies are available at https://doi.org/10.1017/jfm.2019...

Acknowledgements. Acknowledgements may be included at the end of the paper, before the References section or any appendices. Several anonymous individuals are thanked for contributions to these instructions.

Funding. Please provide details of the sources of financial support for all authors, including grant numbers. Where no specific funding has been provided for research, please provide the following statement: "This research received no specific grant from any funding agency, commercial or not-for-profit sectors."

Declaration of interests. A Competing Interests statement is now mandatory in the manuscript PDF. Please
note that if there are no conflicts of interest, the declaration in your PDF should read as follows: Declaration of Interests. The authors report no conflict of interest.

Data availability statement. The data that support the findings of this study are openly available in [repository name] at http://doi.org/[doi], reference number [reference number]. See JFM's research transparency policy for more information
Author ORCIDs. Authors may include the ORCID identifers as follows. F. Smith, https://orcid.org/0000-0001-2345-6789; B. Jones, https://orcid.org/0000-0009-8765-4321

Author contributions. Authors may include details of the contributions made by each author to the manuscript'

Appendix A.

In order not to disrupt the narrative flow, purely technical material may be included in the appendices. This material should corroborate or add to the main result and be essential for the understanding of the paper. It should be a small proportion of the paper and must not be longer than the paper itself.

This is an example of dummy text. This is
an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text.

This is an example of dummy text. This is an example of dummy
text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text. This is an example of dummy text.

REFERENCES

Batchelor, G.K. 1971 Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity. J. Fluid Mech. 5, 113-133.

Bouguet, J.-Y 2008 Camera calibration toolbox for matlab. http://www.vision.caltech.edu/ bouguetj/calib_doc/.
Briukhanov, A. V., Grigorian, S. S., Miagkov, S. M., Plam, M. Y., Shurova, I. E., Eglit, M. E. \& Yakimov, Y. L. 1967 On some new approaches to the dynamics of snow avalanches. In Physics of Snow and Ice, Proceedings of the International Conference on Low Temperature Science, , vol. 1, pp. 1221-1241. Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Brownell, C.J. \& Su, L.K. 2004 Planar measurements of differential diffusion in turbulent jets. AIAA Paper 2004-2335.
Brownell, C.J. \& Su, L.K. 2007 Scale relations and spatial spectra in a differentially diffusing jet. AIAA Paper 2007-1314.
Dennis, S.C.R. 1985 Compact explicit finite difference approximations to the Navier-Stokes equation. In Ninth Intl Conf. on Numerical Methods in Fluid Dynamics (ed. Soubbaramayer \& J.P. Boujot), Lecture Notes in Physics, vol. 218, pp. 23-51. Springer.
Hwang, L.-S. \& Tuck, E.O. 1970 On the oscillations of harbours of arbitrary shape. J. Fluid Mech. 42, 447-464.
Joseph, Daniel D. \& Saut, Jean Claude 1990 Short-wave instabilities and ill-posed initial-value problems. Theoretical and Computational Fluid Dynamics 1, 191-227, 10.1007/BF00418002.
Косн, W. 1983 Resonant acoustic frequencies of flat plate cascades. J. Sound Vib. 88, 233-242.
Lee, J.-J. 1971 Wave-induced oscillations in harbours of arbitrary geometry. J. Fluid Mech. 45, 375-394.
Linton, C.M. \& Evans, D.V. 1992 The radiation and scattering of surface waves by a vertical circular cylinder in a channel. Phil. Trans. R. Soc. Lond. 338, 325-357.
Martin, P.A. 1980 On the null-field equations for the exterior problems of acoustics. Q. J. Mech. Appl. Maths 33, 385-396.
Miller, P.L. 1991 Mixing in high schmidt number turbulent jets. PhD thesis, California Institute of Technology.
Rogallo, R.S. 1981 Numerical experiments in homogeneous turbulence. Tech. Rep. 81835. NASA Tech. Mem.
Ursell, F. 1950 Surface waves on deep water in the presence of a submerged cylinder i. Proc. Camb. Phil. Soc. 46, 141-152.
van Wijngatrden, L. 1968 On the oscillations near and at resonance in open pipes. J. Engng Maths 2, 225-240.
Worster, M.G. 1992 The dynamics of mushy layers. In Interactive dynamics of convection and solidification (ed. S.H. Davis, H.E. Huppert, W. Muller \& M.G. Worster), pp. 113-138. Kluwer.

[^0]: \dagger Email address for correspondence: JFMEditorial@cambridge.org

