
127BL FPGA Labs 1 and 2

Anastasia Goold, Evan Borras

February 16, 2018

Abstract

Within both FPGA labs 1 and 2, we be-
came acquainted with our Altera Cyclone V
FPGA board and Quartus II FPGA editing
software through various projects.These
projects included building: various circuits
to test out the LEDs on the board, various
circuits to test out logic gates, a decode cir-
cuit, a grey code decoder, a 4-bit adder, an
8-bit squarer, and an add on to our 8-bit
squarer to display the results in base 10 as
opposed to hexadecimal.

1 Introduction

FPGAs (Field Programmable Gate Arrays) are
standard devices used in instrumental design. The
advantage of the FPGA is that it has no set archi-
tecture (unlike a Raspberry Pi or some other similar
device) and so can be customized to fit a wide num-
ber of applications through wiring and rewiring the
gates on the board. Altera Boards are compatible
with the software Quartus, used to set the archi-
tecture of the gates and connect them to other de-
vices, whether those built into the board or those
connected externally.

2 Circuits

2.1 Simple Circuits

The first circuit we built and tested in Lab 1 was a
simple connection between our dip switches on the
FPGA board and the boards LEDs. The purpose
of this circuit was to get us used to what the LED
components and dip switch components look like
in the Quartus software as well as to learn how to
draw connections between components in the Quar-
tus software. Through modifying this circuit by
connecting an LED to ground then after connecting
the same LED to a voltage supply we were able to
discover that when the dip switch is in the position
that turns the LED on, the dip switch is providing
the LED with a voltage supply and not ground.

Lab 1.2 dealt with learning how to use the
bus drawing tool by connecting a collection of dip
switches to a collection of LEDs using a bus. The
final result was a circuit that performed the same
as the one built in Lab 1.1 except using a bus con-
nection instead of wire connections.

In Lab 1.3 we learned how to insert components
such as NAND gates and built a few circuits out of
these gates wiring the output to the LEDs. Some
of the circuits we built in this lab include: an OR
circuit built out of NAND gates, and an XOR cir-
cuit built out of NAND gates. See Figure 1. The
OR gate circuit has a truth table of 1 whenever one
of the inputs is 1 and 0 otherwise while the XOR
gate circuit has a truth table of one only when one
of the inputs is one while the other is 0, and zero
otherwise.

The final simple circuit we designed was 7-
segment LED circuit. This circuit was design to
output an 8-bit number in hexadecimal on two 7-
segment LED displays. In this circuit we used a
custom component called a 7segment. This com-
ponent converts an input nibble to a nibble that
lights up the correct LEDs of the 7-segment dis-
play to display the hexadecimal digit of the corre-
sponding input nibble. The schematic for the cir-
cuit is shown in Figure 2 while the truth table for
the custom component is shown in Figure 3. The
first column from the left in the truth table is cor-
responds to the signal read from the blank input
line, the second column from the left corresponds
to the input nibble in hex, while the third column
is the output from the component in binary. Af-
ter playing around with the truth table for the 7seg
component we were able to determine which LEDs
corresponded to which bits of an input passed to
the display device; for the specific device a bit set
to zero lights up the corresponding LED. The cor-
respondence can be seen in Figure 4. This helped
us fix the bugs in the 7seg component truth that
caused hexadecimal digits: 3, 8 and E to display
incorrectly.

1



Figure 1: OR and XOR gate
OR gate is the circuit above while the XOR gate is

the circuit below

Figure 2: 7-segment LED circuit

Figure 3: 7seg Component truth table

Figure 4: 7 segment LED display

2.2 Decoder

We then used NAND gates to construct a 2-bit de-
coder. A decoder takes a 2-bit number (from 00 to
11) and turns only the corresponding bit in a 4-bit
number "on". For example, if the input is 01, the
output is 0100. This can be constructed by com-
bining inverters and AND gates, both of which are
easily constructed from NANDs. Our schematic is
shown in Figure 5.

Figure 5: 2-bit decoder

2.3 Grey Code Translator

A Grey Code Translator was created, converting a
4-bit grey code to a hexadecimal output on the 7
segment display. The schema was taken from pg.
480 of Horowitz and Hill, 2nd Edition.

Figure 6: Grey Code Translator

2.4 Adder

Using the Adder Submodule provided in Quartus,
we constructed an Adder circuit to add two 4-
bit numbers. The numbers are set with the dip
switches, and the output appears in hexadecimal
on the 7-segment display. When the sum exceeds
15, the carry bit is set to high and is added to the
sum of the next digit.

The "mf constant" input on the last 7-segment
always inputs "0001" into the display HEX1 (as

2



seen in Figure 7). However, if the "blank" input
is set to high, it will just display 0. To display the
last carry for sums larger than 15 (F), an inverter
is added to the carry bit of the last adder. Then
when the carry is high, the blank input is low and
HEX1 displays "1".

Figure 7: 4-Bit Adder

2.5 Multiplier

In Lab 2.4 we learned how to use the the FPGA
softwares mega function tool. Using the mega func-
tion tool we built an 8-bit multiplier component
and used it to square 8-bit inputs. The 8-bit input
was then displayed in hexadecimal on two of the 7-
segment LED displays while the 16-bit result was
displayed in hexadecimal on four of the 7-segment
LED displays on the FPGA board. The schematic
for this circuit is shown in Figure 8

Figure 8: Squarer circuit

2.6 Multiplier with Base 10 Display

In the final section for the these two labs we mod-
ified our circuit from Lab 2.4 to display all num-
bers on the 7-segment LED displays in decimal as
opposed to hexadecimal. We accomplished this by
running all numbers through a series of custom di-
vider components that divide their inputs by 10 and
output the quotient and remainder. The remainder
is decimal digit that can then be sent of to a 7seg
component to display on 7-segment LED display.

Since we only had two 7-segment LED displays
dedicated for our input number we could only dis-
play decimal numbers that contained two digits.
This was a problem because our 8-bit input number
can range from 0 to 255 which is a 3 digit decimal
number. Since we were constrained by the amount
of LED displays we had, our multiplier only works
for numbers that contain two digits. We had a sim-
ilar issue with our 16-bit output, which at its maxi-
mum is a 5 digit decimal number, and we only had 4
different LED displays to display it with. Therefore
because of the constraints we had our squarer cir-
cuit only works for numbers for 0 through 99. See
Figure 9 for the schematic for this circuit.

Aside from space constraints, it is much easier
to translate binary into hex than binary into deci-
mal. The first four digits of a binary number trans-
late into the first digit of a hex number, and so on.
This makes conversion convenient and easy. Dec-
imal contains no such correspondence, making it
more tedious to work with.

Figure 9: Squarer circuit with decimal display

3


	Introduction
	Circuits
	Simple Circuits
	Decoder
	Grey Code Translator
	Adder
	Multiplier
	Multiplier with Base 10 Display


