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1 Introduction

In this portfolio, I have included seven portfolio theorems, using a variety of proof
methods and covering a variety of mathematical concepts.

The proof of Portfolio Theorem 1 is a proof by contrapositive using the definitions of
prime and composite integers.

Portfolio Theorem 2 is a direct proof that uses the “divides” relation.

Portfolio Theorem 3 and Portfolio Theorem 5 are both proofs by mathematical
induction, but the proof of Portfolio Theorem 3 is algebraic, while the proof of
Portfolio Theorem 5 is a geometric argument.

I included two different proofs for Portfolio Theorem 4, one of which is a non-
constructive proof by cases, the other of which is a constructive direct proof, but
relies on Lemma 3, which was proven using a proof by contradiction.

For Portfolio Theorem 6, I prove that a function is a bijection. For Portfolio
Theorem 7, I prove that a function is not an injection.

I have also included, at the end, a LATEX “cheat sheet.”

2 Conjectures and Proofs

2.1 A Theorem Concerning Primes

2.1.1 A Definition

Definition 1. Saying that an integer, n, is prime means that n has exactly two
distinct positive factors. An integer with more than two distinct positive factors is
composite.

For example, 7 is prime because its positive factors are 1 and 7, while 12 is composite
because its positive factors are 1, 2, 3, 4, 6, and 12. (Note that 1 is neither prime nor
composite because it has only one positive factor, namely 1.)

Another thing to be aware of about this definition is that if n is composite it must
have at least two factors that are greater than 1.

Conjecture 1. If n and b are positive integers and 1 + b + b2 + · · · + bn−2 + bn−1 is
prime, then n is prime.

2.1.2 Equivalent Expressions and the Negation

I began by rewriting the proposition so that the quantifiers are explicit. The
quantifiers are in bold and logical connective are emphasized to better see the logical
structure.
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For all positive integers b and for all positive integers n, if 1 + b + b2 +
· · ·+ bn−2 + bn−1 is prime, then n is prime.

The variables b and n are universally quantified and both are taken from the set of
positive integers, which I will denote by Z+. So, now I can see that this conjecture
has the form

(∀b ∈ Z+)(∀n ∈ Z+)
(
S(b, n)→ P (n)

)
(1)

where S(b, n)) is the predicate “1 + b + b2 + · · · + bn−2 + bn−1 is prime,” and P (n)
is the predicate “n is prime.” This form makes it easier to find the negation and
contrapositive.

When we find the negation, the quantifiers are changed, and the negation of an
implication, P → Q is P ∧ ¬Q, so the negation of Statement (1) is

(∃b ∈ Z+)(∃n ∈ Z+)
(
S(b, n) ∧ ¬P (n)

)
(2)

which, in plain language, is

there are positive integers b and n such that 1 + b+ b2 + · · ·+ bn−2 + bn−1

is prime and n is not prime.

It will probably be easier to start with knowing whether a value for n is prime or not
and find out about the value for 1 + b + b2 + · · · + bn−2 + bn−1. Since Statement (2)
is a conjunction, I can write the two parts in either order, so I will rewrite it as

Conjecture 1a (Negation). There are positive integers b and n such that n is not
prime and 1 + b + b2 + · · ·+ bn−2 + bn−1 is prime.

Since a counter-example is an example that proves the negation of a statement, a
counter-example for Conjecture 1 would consist of a positive integer b and a positive
integer n so that n is not prime and 1 + b + b2 + · · ·+ bn−2 + bn−1 is prime.

On the other hand, if I want to start with n and try to prove that Conjecture 1 is true,
I can replace Conjecture 1 with its contrapositive, which will be logically equivalent.
The contrapositive of Conjecture 1 will have the form

(∀b ∈ Z+)(∀n ∈ Z+)
(
¬P (n)→ ¬S(b, n)

)
(3)

which I will now write as Conjecture 1b

Conjecture 1b (Contrapositive). For all positive integers b and all positive integers
n, if n is not prime, then 1 + b + b2 + · · ·+ bn−2 + bn−1 is not prime.

I experimented to see if I could find a counter-example, or see a way to prove the
conjecture. Since I would need n to be composite for a counter-example, I primarily
looked at those cases, but looked at others, too, to look for patterns. I looked at
several examples where I kept the same value of b and changed n, and I looked at
other examples where I kept n the same and changed b.
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2.1.3 Experimentation

1. b = 6, n = 1 (1 is not prime): 61−1 = 60 = 1, 1 is not prime.

2. b = 2, n = 2 (2 is prime): 1 + 2 = 3, 3 is prime.

3. b = 2, n = 3 (3 is prime): 1 + 2 + 22 = 1 + 2 + 4 = 7, 7 is prime.

4. b = 2, n = 4 (4 = 2 · 2 is not prime): 1 + 2 + 22 + 23 = 1 + 2 + 4 + 8 = 15,
15 = 3 · 5 is not prime.

5. b = 2, n = 5 (5 is prime): 1 + 2 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31, 31 is
prime.

6. b = 2, n = 6 (6 = 2·3 is not prime): 1+2+22+23+24+25 = 1+2+4+8+16+32 =
63, 63 = 3 · 3 · 7 is not prime.

7. b = 3, n = 1 (1 is not prime): 31−1 = 30 = 1, 1 is not prime.

8. b = 3, n = 4 (4 is not prime): 1 + 3 + 32 + 33 = 1 + 3 + 9 + 27 = 40, 40 is not
prime.

9. b = 3, n = 5 (5 is prime): 1 + 3 + 32 + 33 + 34 = 1 + 3 + 9 + 27 + 81 = 121,
121 = 11 · 11 is not prime, (but the conjecture says that if 121 is not prime
then n is not prime, so this isn’t a counter-example.)

I noticed that n = 1 is not prime, and b1−1 = b0 = 1 (and again, 1 is not prime), so
the conjecture is true in the case where n = 1.

I realized that any positive integer greater than 1 must either be prime or composite,
and if n > 1 is composite, then it must have a positive integer factor k so that k > 1
and k 6= n. That means that we can find an integer j so that n = kj where j > 1
and j 6= n.

Next I tried to see if I could figure out how being able to factor n this way applied
to my experiments where n is not prime.

Let’s look at n = 6 = 2 · 3, b = 2. 63 = 7 · 9 = 7 · 3 · 3.

I noticed that when b = 2 and n = 2 · 3, the value I got for the sum was 63 = 3 · 3 · 7.
But when b = 2 and n = 2 the sum was 3, and when b = 2 and n = 3 the sum was 7
and both of these sums are factors of 63.

After a couple more examples, I started to see a pattern: the sum would have n things
added up, so if n was composite, I could break it into smaller groups of the same size.
For example, I can break a sum of six things into three groups of two or two groups
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of three:

(1 + 2 + 22 + 23 + 24 + 25) = (1 + 2) + (22 + 23) + (24 + 25) (4)

= (1 + 2) + 22(1 + 2) + 24(1 + 2)

= (1 + 22 + 24)(1 + 2)

= (21)(3)

or

(1 + 2 + 22 + 23 + 24 + 25) = (1 + 2 + 22) + (23 + 24 + 25) (5)

= (1 + 2 + 22) + 23(1 + 2 + 22)

= (1 + 23)(1 + 2 + 22)

= (9)(7)

Then I was ready to write the proof, which meant that the conjecture would be a
theorem!

2.1.4 Theorem and Proof

Portfolio Theorem 1. If n and b are positive integers and 1+b+b2+· · ·+bn−2+bn−1

is prime, then n is prime.

Proof. We will prove this theorem using the contrapositive. That is, we will prove
that if n and b are positive integers and n is not prime , then 1+b+b2+· · ·+bn−2+bn−1

is not prime. Thus, we will assume that n and b are positive integers and that n is
not prime, and we will show that the sum 1 + b + b2 + · · ·+ bn−2 + bn−1 is not prime.

First, we note that if n = 1, then the sum is just 1, which is not prime, so the theorem
holds in this case.

Next, in the case where n > 1 and n is not prime, we know that n is composite,
so we will be able to find integers k > 1 and j > 1 so that n = kj. We can
think of this as grouping n objects into k groups of size j. So, because the sum
1 + b + b2 + · · ·+ bn−2 + bn−1 is a sum of n terms, we can write it as

1 + b + b2 + · · ·+ bn−2 + bn−1 = (1 + b + b2 + · · ·+ bn−2 + bj−1) (6)

+ (bj + bj+1 + · · ·+ bj+(j−2) + b2j−1)

+ · · ·+ (b(k−1)j + b(k−1)j+1 + · · ·+ b(k−1)j+(j−2) + bkj−1)

= (1 + bj + b2j + ·+ b(k−1)j)

× (1 + b + b2 + · · ·+ bn−2 + bj−1). (7)

Since b > 0, j > 1, and k > 1, each of the two sums in equation (7) will be greater
than 1, and so the sum 1 + b+ b2 + · · ·+ bn−2 + bn−1 must be composite, and therefore
not prime.

Thus, we have shown that if n and b are positive integers and n is not prime, then
the sum 1 + b + b2 + · · ·+ bn−2 + bn−1 is not prime.
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2.2 Divisibility by Six

A commonly taught “rule” for testing for divisibility by six is to check that a number
(an integer) is even and divisible 3. This always works, which means that it is a
theorem. Using the fact that an integer is even exactly when it is divisible by 2, we
the following theorem.

Portfolio Theorem 2. Let M be any integer. If M is divisible by 2 and M is
divisible by 3 then M is divisible by 6.

Proof. Stating that M is divisible by 3 means that we can express M as M = 3k
where k is an integer. Similarly, Stating that M is divisible by 2 means that we can
express M as M = 2j where j is an integer.

We wish to show that if we assume that M is divisible by both 2 and 3, then we will
be able to find an integer, say q, so that M = 6q.

Because we are given that M is divisible by 3, there is an integer, k so that M = 3k.
Furthermore, there is an integer j so that M = 2j because we are given that M is
divisible by 2. Thus, substituting, we see that

3k = 2j. (8)

Now, we know that 3 = 2 + 1, so substituting this into equation (8) and using the
distributive property, we have

3k = 2j

(2 + 1)k = 2j

2k + k = 2j

so

k = 2j − 2k

= 2(j − k). (9)

Now, substituting equation (9) into the equation M = 3k, we see that

M = 3
(
2(j − k)

)

= 6(j − k). (10)

Thus, given that the integer M is divisible by 2 and 3, we see from equation (10) that
M is divisible by 6.

2.3 A Lemma and a Theorem

Lemma 2. For any real numbers a, b, and c, if a ≥ b and c ≥ 0 then ca ≥ cb.
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Proof. Let a, b, and c be real numbers with a ≥ b and c ≥ 0. We will show that
ca ≥ cb using a direct proof.

We know that a ≥ b if and only if a− b ≥ 0. Furthermore, we know that the product
of any two non-negative real numbers will be non-negative. Thus, we know that

c(a− b) = ca− cb ≥ 0

and so

ca ≥ cb

which is what we wanted to show.

Portfolio Theorem 3. For any non-negative real numbers a and b, if a ≥ b, then
for all natural numbers n, an ≥ bn.

Proof. Let a and b be non-negative real numbers and assume that a ≥ b. We will
prove that for any natural number n, an ≥ bn using induction.

Basis Step

For our basis step, we know that a > b, so

a1 = a ≥ b = b1.

So a1 ≥ b1.

Inductive Step

For our inductive step, we will show that if k is any natural number and ak ≥ bk,
then ak+1 ≥ bk+1. Thus, we let k be an arbitrary natural number and we assume that
ak ≥ bk. We first note that ak+1 = a · ak and bk+1 = b · bk. Now, because a ≥ 0, we
know from Lemma 2 that

a · ak ≥ a · bk. (11)

Furthermore, because bk ≥ 0 and a ≥ b, applying Lemma 2 again, we have

a · bk ≥ b · bk. (12)

Thus, combining equations (11) and (12), we have

ak+1 = a · ak

≥ a · bk

≥ b · bk

= bk+1.

So, we have shown that if a ≥ b, then for any natural number k, if ak ≥ bk, then
ak+1 ≥ bk+1, which concludes our inductive step.

Since we have shown the basis step and the inductive step, we have shown that for
any non-negative real numbers a and b, if a ≥ b, then for all natural numbers n,
an ≥ bn.
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2.4 Two Proofs of a Conjecture

Here we present a conjecture together with both a constructive and a non-constructive
proof of the conjecture.

Portfolio Theorem 4. The set of irrational real numbers is not closed under
exponentiation. That is, there exist irrational numbers a and b so that ab is rational.

2.4.1 A Lemma

Before we begin our proofs of Portfolio Theorem 4, we will prove a lemma that will
be needed in the constructive proof. (It is not needed in the non-constructive proof.)

Lemma 3. The logarithm base 2 of 9, log2(9), is irrational.

Proof of Lemma 3. We will prove that the logarithm base 2 of 9 is irrational by means
of a proof by contradiction. Thus, we will assume that log2(9) is rational, and we will
show that this gives rise to a contradiction.

If log2(9) is rational, there must exist (because of what it means to be a rational
number) integers p and q, with q 6= 0, so that log2(9) = p/q. This means (from
properties of logarithms) that

2
p/q = 9. (13)

Furthermore, because 9 > 2, we must have that p/q > 1 > 0, and we can assume
that both p and q are positive integers, since otherwise they would both have to be
negative and we would use instead the integers −p and −q.

Raising each side of equation (13) to the q power, we obtain

2p = 9q. (14)

Because p and q are positive integers, both sides of equation (14) are integers.
Furthermore, the integer on the left, 2p, must be even, and the number on the right,
9q, is odd. However, no integer can be both even and odd, and so we have arrived at
a contradiction. Therefore, we have proven that log2(9) is irrational.

2.4.2 A Non-Constructive Proof of Portfolio Theorem 4

Non-Constructive Proof of Portfolio Theorem 4. We will show that there must be
irrational numbers a and b such that ab is rational by considering two possibilities

for the real number
(√

3
)√2

, namely that this number must either be irrational or
rational.

Case 1 (
(√

3
)√2

rational) We have shown previously that
√

2 and
(√

3
)

are

irrational. If
(√

3
)√2

is rational, then we can set a =
(√

3
)

and b =
√

2, and have
that

ab =
(√

3
)√2
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so that a and b are irrational and ab is rational, and so our theorem is true.

Case 2 (
(√

3
)√2

irrational) If
(√

3
)√2

is irrational, then we can set a =
(√

3
)√2

and b =
√

2, and we have

ab =

((√
3
)√2
)√2

=
(√

3
)√2·

√
2

=
(√

3
)2

= 3

and 3 is rational, so we have found a and b irrational with ab rational, so our theorem
is true.

Since we have shown that whether
(√

3
)√2

is rational or irrational, there exist
irrational numbers a and b with ab rational, we have proven our theorem.

2.4.3 A Constructive Proof of Portfolio Theorem 4

Constructive Proof of Portfolio Theorem 4. We will show that there exist irrational
numbers a and b with the property that ab is rational by exhibiting such numbers.
Let a =

√
2 and let b = log2(9). We have shown previously that

√
2 is irrational, and

by Lemma 3 we know that log2(9) is irrational. So, using properties of logarithms
and of exponents, we have

ab =
(√

2
)log2(9)

=
(
2
1/2
)log2(32)

=
(
2
1/2
)2 log2(3)

= (2)log2(3)

= 3.

Because 3 is rational, we have shown that there exist irrational numbers a and b such
that ab is rational, as desired.

2.5 A Non-Algebraic Induction Proof

Definition 2. An L-triomino is a geometric figure consisting of three congruent

squares arranged into an L, . We say that a region R can be tiled by L-triominoes
if the region can be completely covered by L-triominoes without overlapping.
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Portfolio Theorem 5. For any natural number n, any 2n× 2n chessboard composed
of squares of a particular size with one square removed can be completely tiled using
L-triominoes consisting of squares of the same given size.

Proof. We will show that for any natural number n, any chessboard of size 2n × 2n

with one square deleted can always be tiled using L-triominoes using mathematical
induction.

Basis Step

For our basis step, we need to show that any 21 × 21 = 2 × 2 chess board with one
square deleted can be tiled using L-triominoes.

We first note that we can always rotate the 2 × 2 chessboard so that the deleted

square is in the lower left corner: . Here, it is obvious that we can exactly tile

the three remaining squares of the 2× 2 chessboard with one L-triomino, .

Inductive Step

For our inductive step, we will fix k to be some positive integer and show that if every
2k×2k chessboard with one square deleted can be tiled using L-triominoes, then every
2k+1 × 2k+1 chessboard with one square deleted can be tiled using L-triominoes.

Given any 2k+1 × 2k+1 chessboard with one square deleted, we first partition the
chessboard into four regions of size 2k × 2k, and then rotate the chessboard so that
the missing square is in the lower left 2k × 2k region, as shown in Figure 1.

Figure 1: A 2k+1 × 2k+1 chessboard partitioned into four 2k × 2k regions.

It is clear that the lower left region is precisely a 2k × 2k chessboard with one square
deleted and thus, by our inductive hypothesis, can be tiled with L-triominoes.

Next, we place one L-triomino adjacent to the lower left region so that it occupies
one square in each of the remaining three 2k × 2k regions as shown in Figure 2.

Because the L-triomino covers exactly one tile in each of the three 2k×2k regions, the
remaining squares form three 2k × 2k chessboards each with one square deleted, and
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Figure 2: A 2k+1 × 2k+1 chessboard with one L-triomino.

thus they can, by our inductive hypothesis, be tiled with L-triominoes as well, and
thus the entire 2k+1×2k+1 chessboard can be tiled with L-triominoes. This completes
the inductive step.

Since we have proven the basis step and the inductive step, we have proven our
proposition, that for any natural number n, any 2n × 2n chessboard with one square
removed can be completely tiled using L-triominoes.

2.6 A Proof of Bijection

Portfolio Theorem 6. The function f : R→ R defined by

f(x) =

{
2; x = 3
4x+3
2x−6

; x 6= 3
(15)

is a bijection.

Proof. We will prove that the function, f , defined by equation (15) is a bijection by
proving that f is an injection and that f is a surjection.

Injectivity To prove that f is an injection, we need to show that for any x1 and
x2 that are elements of the domain of f , if x1 6= x2, then f(x1) 6= f(x2). We will do
this by using the contrapositive. That is, we will let x1 and x2 be arbitrary elements
of the domain of f and show that if f(x1) = f(x2), then x1 = x2. In this case, this
means that we assume x1 and x2 are arbitrary real numbers and that f(x1) = f(x2)
and we will show that x1 = x2.

Because f is piecewise defined, we need to consider that we could have x1 = 3 or
x1 6= 3, and similarly that we could have x2 = 3 or x2 6= 3. If x1 = 3 and x2 = 3, then
there is nothing to show, since x1 = 3 = x2. Thus we have to consider the following
cases: x1 = 3 and x2 6= 3, x1 6= 3 and x2 = 3, and x1 6= 3 and x2 6= 3. It is easy to
see that by simply relabeling x1 and x2, the first two cases are really the same. That
leaves us with two cases to consider.

11



Case 1 (x1 = 3 and x2 6= 3) This is a proof by contradiction, and thus we will
assume that x1 = 3, x2 6= 3, and f(x1) = f(x2), and show that a contradiction arises.
Since x1 = 3 and x2 6= 3, we know that f(x1) = f(3) = 2 and f(x2) = 4x2+3

2x2−6
. Because

we assume that f(x1) = f(x2), we thus have

4x2 + 3

2x2 − 6
= 2. (16)

Multiplying each side of equation (16) by 2x2 − 6, we obtain

4x2 + 3 = 2(2x2 − 6)

= 4x2 − 12. (17)

By subtracting 4x2 from both sides of equation (17) we get 3 = −12), which is a
contradiction. Thus, the x1 = 3, x2 6= 3, and f(x1) = f(x2) cannot occur.

Case 2 (x1 6= 3 and x2 6= 3) It now remains to show that if x1 and x2 are any real
numbers with x1 6= 3, x2 6= 3, and f(x1) = f(x2), then x1 = x2.

Because x1 6= 3, x2 6= 3, and f(x1) = f(x2), we have that

4x1 + 3

2x1 − 6
=

4x2 + 3

2x2 − 6
. (18)

Multiplying both sides of equation (18) by (2x1 − 6)(2x2 − 6) and expanding, we get

(4x1 + 3)(2x2 − 6) = (4x2 + 3)(2x1 − 6)

and so

8x1x2 − 24x1 + 6x2 − 18 = 8x1x2 + 6x1 − 24x2 − 18. (19)

Subtracting the left hand side of equation (19) from both sides, we see that

0 = 30x1 − 30x2

= 30(x1 − x2). (20)

From equation (20), since 30 6= 0, we see that x1 − x2 = 0, and thus x1 = x2, as
desired.

Thus, we have shown that the function f is injective.

Surjectivity We will now show that f is surjective by showing that for any b in
the codomain of f , there is an element x in the domain of f so that f(x) = b. Thus,
we let b be an arbitrary element of the codomain of f , which is to say that b is any
real number.

We will consider two cases for the value of b: either b = 2 or b 6= 2.

Case 1 (b = 2) If b = 2, then we see that if x = 3, then f(x) = 2 = b as desired.
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If b 6= 2, 2b− 4 6= 0 and so x = 6b+3
2b−4

is a real number, and thus is in the domain of f .
Furthermore,

f(x) = f

(
6b + 3

2b− 4

)

=
4
(

6b+3
2b−4

)
+ 3

2
(

6b+3
2b−4

)
− 6

=
4 (6b + 3) + 3 (2b− 4)

2 (6b + 3)− 6 (2b− 4)

=
24b + 12 + 6b− 12

12b + 6− 12b + 24

=
30b

30
= b.

We have thus shown that for any element b of the codomain of f , there is an element
x of the domain of f so that f(x) = b, which completes our proof that f is surjective.

Since we have shown that f is injective and surjective, this completes our proof that
f is a bijection.

2.7 Checking and Disproving Injectivity

We start by defining the set D = R − {3}, and looking at the function f :D → R
defined by

f :x 7→ 2x3

x− 3
.

We will investigate the question of whether f is injective or not.

We will check by letting x and z be arbitrary elements of the domain, D = R− {3},
of f . If we can show that the only way for this to happen is for x = z, then we know
that f is injective. On the other hand, if we can find x 6= z so that f(x) = f(z), then
we know that f is not injective.

We assume that f(x) = f(z). So,

2x3

x− 3
=

2z3

z − 3
. (21)

We can multiply equation (21) by (x− 3) (z − 3) and simplify to get

�2x3

����(x− 3)
����(x− 3)(z − 3) =

�2z3

����(z − 3)
(x− 3)����(z − 3)

or

x3(z − 3) = z3(x− 3). (22)
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Next we subtract z3(x− 3) to obtain

x3(z − 3)− z3(x− 3) = 0. (23)

By expanding, collecting like terms, and factoring equation (23), we have

0 = x3(z − 3)− z3(x− 3)

= x3z − 3x3 − x z3 + 3z3

= x3z − x z3 − 3x3 + 3z3

= x3z − x z3 − 3(x3 − z3)

= xz(x2 − z2)− 3(x3 − z3)

= xz(x + z)(x− z)− 3(x2 + x z + z2)(x− z)

=
(
xz(x + z)− 3(x2 + x z + z2)

)
(x− z). (24)

From equation (24), we can see that if f(x) = f(z), then either

x− z = 0 and thus x = z

or

xz(x + z)− 3(x2 + x z + z2) = 0. (25)

If we can show that for all x, z ∈ D, xz(x + z) − 3(x2 + x z + z2) 6= 0, then we will
have shown that f is injective.

Otherwise, if we can find x 6= z so that xz(x + z) − 3(x2 + x z + z2) = 0, we have a
likely candidate to show that f is not injective.

Now, if x = 0, then f(x) = f(0) = 2·03
0−3

= 0, and thus if f(x) = f(z), then f(z) =
2z3

z−3
= 0. Multiplying both sides by z − 3 gives us z = 0. So, of f(0) = f(z), then

z = 0.

Having dealt with the case x = 0 separately, we can now assume that x 6= 0 and, by
symmetry, z 6= 0.

Since x 6= 0, we can define a = z/x, so that z = a x, and substitute z = a x in
equation (25). Expanding and then factoring a common factor of x2, we get

0 = xz(x + z)− 3(x2 + x z + z2)

= x(a x)(x + a x)− 3x2 − 3x (a x)− 3(a x)2

= x(a x)(x + a x)− 3(x2 + x (a x) + (a x)2)

= a x3 + a2x3 − 3(x2 + a x2 + a2x2)

= (a2 + a)x3 − 3(a2 + a + 1)x2

= x2
(
(a2 + a)x− 3(a2 + a + 1)

)
. (26)

We have already said that x 6= 0, so equation (26) implies that

(a2 + a)x− 3(a2 + a + 1) = 0.

14



and thus
(a2 + a)x = 3(a2 + a + 1). (27)

Recalling that a = z/x and we want to find x 6= z so that f(x) = f(z), any value of a
other than a = 1 is reasonable. In particular, as long as we choose a so that a 6= 0
and a 6= −1 we can divide by a2 + a in equation (27) getting

x =
3(a2 + a + 1)

a2 + a
. (28)

Now let’s pick a value of a. If we try a = −2, we get

x =
3
(
(−2)2 + (−2) + 1

)

(−2)2 + (−2)

=
3(4− 2 + 1)

4− 2

=
3(3)

2

=
9

2
, (29)

and z = a x = (−2)(9/2) = −9.

Clearly −9 6= 9/2, so if f(−9) = f(9/2), then we will have shown that f is not injective.
Checking, we see that

f(−9) =
2 · (−9)3

−9− 3
f (9/2) =

2 · (9/2)3

(9/2)− 3

=
−2 · 93

−12
=

93/22

(9− 6)/2

=
93

6
and =

93/2

3

=
243

2
=

93

6

=
243

2
,

and thus we have that −9 6= 9/2 and f (−9) = f (9/2), so f is not injective. We are
now ready to state a conjecture and proof.

Portfolio Theorem 7. Let D = R− {3}, and let the function f :D → R be defined
by

f :x 7→ 2x3

x− 3
.

The function f is not injective.
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Proof. We will show that the function f(x) = 2x3

x−3
is not an injection by showing two

distinct elements of the domain that map to the same element of the codomain. That
is, we will find x1, x2 ∈ D with x1 6= x2 and f(x1) = f(x2).

Let x1 = −9 and let x2 = 9/2. Since x1 6= 3 and x2 6= 3, we have that x1 ∈ D and
x2 ∈ D. It is also clear that x1 6= x2. Thus, it remains to show that f(x1) = f(x2).

By direct calculation, we see that

f(x1) = f(−9) f(x2) = f (9/2)

=
2 · (−9)3

−9− 3
=

2 · (9/2)3

(9/2)− 3

=
−2 · 93

−12
=

93/22

(9− 6)/2

=
93

6
and =

93/2

3

=
243

2
=

93

6

=
243

2
,

and thus f(x1) = f(x2).

Since we have shown that −9 6= 9/2 and f (−9) = f (9/2), we have shown that f is not
injective.
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LATEX2ε Cheat Sheet

Document classes
book Default is two-sided.
report No \part divisions.
article No \part or \chapter divisions.
letter Letter (?).
slides Large sans-serif font.
Used at the very beginning of a document:
\documentclass{class}. Use \begin{document} to start
contents and \end{document} to end the document.

Common documentclass options
10pt/11pt/12pt Font size.
letterpaper/a4paper Paper size.
twocolumn Use two columns.
twoside Set margins for two-sided.
landscape Landscape orientation. Must use dvips

-t landscape.
draft Double-space lines.
Usage: \documentclass[opt,opt]{class}.

Packages
fullpage Use 1 inch margins.
anysize Set margins: \marginsize{l}{r}{t}{b}.
multicol Use n columns: \begin{multicols}{n}.
latexsym Use LATEX symbol font.
graphicx Show image: \includegraphics[width=x]{file}.
url Insert URL: \url{http://. . . }.
Use before \begin{document}. Usage: \usepackage{package}

Title
\author{text} Author of document.
\title{text} Title of document.
\date{text} Date.
These commands go before \begin{document}. The
declaration \maketitle goes at the top of the document.

Miscellaneous
\pagestyle{empty} Empty header, footer and no page num-

bers.
\tableofcontents Add a table of contents here.

Document structure
\part{title}
\chapter{title}
\section{title}
\subsection{title}

\subsubsection{title}
\paragraph{title}
\subparagraph{title}

Use \setcounter{secnumdepth}{x} suppresses heading
numbers of depth > x, where chapter has depth 0. Use a *, as
in \section*{title}, to not number a particular item—these
items will also not appear in the table of contents.

Text environments
\begin{comment} Comment (not printed). Requires verbatim

package.
\begin{quote} Indented quotation block.
\begin{quotation}Like quote with indented paragraphs.
\begin{verse} Quotation block for verse.

Lists
\begin{enumerate} Numbered list.
\begin{itemize} Bulleted list.
\begin{description}Description list.
\item text Add an item.
\item[x] text Use x instead of normal bullet or number.

Required for descriptions.

References
\label{marker} Set a marker for cross-reference, often of the

form \label{sec:item}.
\ref{marker} Give section/body number of marker.
\pageref{marker} Give page number of marker.
\footnote{text} Print footnote at bottom of page.

Floating bodies
\begin{table}[place] Add numbered table.
\begin{figure}[place] Add numbered figure.
\begin{equation}[place] Add numbered equation.
\caption{text} Caption for the body.
The place is a list valid placements for the body. t=top,
h=here, b=bottom, p=separate page, !=place even if ugly.
Captions and label markers should be within the environment.

Text properties
Font face
Command Declaration Effect
\textrm{text} {\rmfamily text} Roman family
\textsf{text} {\sffamily text} Sans serif family
\texttt{text} {\ttfamily text} Typewriter family

\textmd{text} {\mdseries text} Medium series
\textbf{text} {\bfseries text} Bold series
\textup{text} {\upshape text} Upright shape
\textit{text} {\itshape text} Italic shape
\textsl{text} {\slshape text} Slanted shape
\textsc{text} {\scshape text} Small Caps shape
\emph{text} {\em text} Emphasized
\textnormal{text}{\normalfont text}Document font
\underline{text} Underline

The command (tttt) form handles spacing better than the
declaration (tttt) form.

Font size
\tiny tiny

\scriptsize scriptsize

\footnotesize footnotesize
\small small
\normalsize normalsize
\large large

\Large Large
\LARGELARGE
\huge huge
\Huge Huge

These are declarations and should be used in the form {\small

. . . }, or without braces to affect the entire document.

Verbatim text
\begin{verbatim} Verbatim environment.
\begin{verbatim*} Spaces are shown as  .
\verb!text! Text between the delimiting characters (in

this case ‘!’) is verbatim.

Justification
Environment Declaration
\begin{center} \centering

\begin{flushleft} \raggedright

\begin{flushright} \raggedleft

Miscellaneous

\linespread{x} changes the line spacing by the multiplier x.

Text-mode symbols

Symbols

& \& \_ . . . \ldots • \textbullet

$ \$ ˆ \^{} | \textbar \ \textbackslash

% \% ˜ \~{} # \# § \S

Accents
ò \‘o ó \’o ô \^o õ \~o ō \=o

ȯ \.o ö \"o o̧ \c o ǒ \v o ő \H o

ç \c c o. \d o o
¯

\b o �oo \t oo œ \oe

Œ \OE æ \ae Æ \AE å \aa Å \AA

ø \o Ø \O  l \l  L \L ı \i

 \j ¡ ~‘ ¿ ?‘

Delimiters
‘ ‘ “ ‘‘ { \{ [ [ ( ( < \textless

’ ’ ” ’’ } \} ] ] ) ) > \textgreater

Dashes
Name Source Example Usage
hyphen - X-ray In words.
en-dash -- 1–5 Between numbers.
em-dash --- Yes—or no? Punctuation.

Line and page breaks

\\ Begin new line without new paragraph.
\\* Prohibit pagebreak after linebreak.
\kill Don’t print current line.
\pagebreak Start new page.
\noindent Do not indent current line.

Miscellaneous
\today March 12, 2012.
$\sim$ Prints ∼ instead of \~{}, which makes ˜.
~ Space, disallow linebreak (W.J.~Clinton).
\@. Indicate that the . ends a sentence when following

an uppercase letter.
\hspace{l} Horizontal space of length l (Ex: l = 20pt).
\vspace{l} Vertical space of length l.
\rule{w}{h}Line of width w and height h.

Tabular environments

tabbing environment

\= Set tab stop. \> Go to tab stop.

Tab stops can be set on “invisible” lines with \kill at the end
of the line. Normally \\ is used to separate lines.

tabular environment

\begin{array}[pos]{cols}
\begin{tabular}[pos]{cols}
\begin{tabular*}{width}[pos]{cols}

tabular column specification

l Left-justified column.
c Centered column.
r Right-justified column.
p{width} Same as \parbox[t]{width}.
@{decl} Insert decl instead of inter-column space.
| Inserts a vertical line between columns.

tabular elements

\hline Horizontal line between rows.
\cline{x-y} Horizontal line across columns x through y.
\multicolumn{n}{cols}{text}

A cell that spans n columns, with cols column
specification.

Math mode

For inline math, use \(...\) or $...$. For displayed math,
use \[...\] or \begin{equation}.

Superscriptx ^{x} Subscriptx _{x}
x
y

\frac{x}{y}
∑n

k=1
\sum_{k=1}^n

n
√
x \sqrt[n]{x}

∏n

k=1
\prod_{k=1}^n

Math-mode symbols

≤ \leq ≥ \geq 6= \neq ≈ \approx

× \times ÷ \div ± \pm · \cdot
◦ ^{\circ} ◦ \circ ′ \prime · · · \cdots
∞ \infty ¬ \neg ∧ \wedge ∨ \vee

⊃ \supset ∀ \forall ∈ \in → \rightarrow

⊂ \subset ∃ \exists /∈ \notin ⇒ \Rightarrow

∪ \cup ∩ \cap | \mid ⇔ \Leftrightarrow

ȧ \dot a â \hat a ā \bar a ã \tilde a

α \alpha β \beta γ \gamma δ \delta

ε \epsilon ζ \zeta η \eta ε \varepsilon

θ \theta ι \iota κ \kappa ϑ \vartheta

λ \lambda µ \mu ν \nu ξ \xi

π \pi ρ \rho σ \sigma τ \tau

υ \upsilon φ \phi χ \chi ψ \psi

ω \omega Γ \Gamma ∆ \Delta Θ \Theta

Λ \Lambda Ξ \Xi Π \Pi Σ \Sigma

Υ \Upsilon Φ \Phi Ψ \Psi Ω \Omega

Bibliography and citations

When using BibTEX, you need to run latex, bibtex, and
latex twice more to resolve dependencies.

Citation types
\cite{key} Full author list and year. (Watson and Crick

1953)
\citeA{key} Full author list. (Watson and Crick)
\citeN{key} Full author list and year. Watson and Crick

(1953)
\shortcite{key} Abbreviated author list and year. ?
\shortciteA{key} Abbreviated author list. ?
\shortciteN{key} Abbreviated author list and year. ?
\citeyear{key} Cite year only. (1953)
All the above have an NP variant without parentheses; Ex.
\citeNP.

BibTEX entry types
@article Journal or magazine article.
@book Book with publisher.
@booklet Book without publisher.
@conference Article in conference proceedings.
@inbook A part of a book and/or range of pages.
@incollection A part of book with its own title.
@misc If nothing else fits.
@phdthesis PhD. thesis.
@proceedings Proceedings of a conference.
@techreport Tech report, usually numbered in series.
@unpublished Unpublished.

BibTEX fields
address Address of publisher. Not necessary for major

publishers.
author Names of authors, of format ....
booktitle Title of book when part of it is cited.
chapter Chapter or section number.
edition Edition of a book.
editor Names of editors.
institution Sponsoring institution of tech. report.
journal Journal name.
key Used for cross ref. when no author.
month Month published. Use 3-letter abbreviation.
note Any additional information.
number Number of journal or magazine.
organization Organization that sponsors a conference.
pages Page range (2,6,9--12).
publisher Publisher’s name.
school Name of school (for thesis).
series Name of series of books.
title Title of work.
type Type of tech. report, ex. “Research Note”.
volume Volume of a journal or book.
year Year of publication.
Not all fields need to be filled. See example below.

Common BibTEX style files
abbrv Standard abstract alpha with abstract
alpha Standard apa APA
plain Standard unsrt Unsorted

The LATEX document should have the following two lines just
before \end{document}, where bibfile.bib is the name of the
BibTEX file.

\bibliographystyle{plain}

\bibliography{bibfile}

BibTEX example
The BibTEX database goes in a file called file.bib, which is
processed with bibtex file.

@String{N = {Na\-ture}}

@Article{WC:1953,

author = {James Watson and Francis Crick},

title = {A structure for Deoxyribose Nucleic Acid},

journal = N,

volume = {171},

pages = {737},

year = 1953

}

Sample LATEX document
\documentclass[11pt]{article}

\usepackage{fullpage}

\title{Template}

\author{Name}

\begin{document}

\maketitle

\section{section}

\subsection*{subsection without number}

text \textbf{bold text} text. Some math: $2+2=5$

\subsection{subsection}

text \emph{emphasized text} text. \cite{WC:1953}

discovered the structure of DNA.

A table:

\begin{table}[!th]

\begin{tabular}{|l|c|r|}

\hline

first & row & data \\

second & row & data \\

\hline

\end{tabular}

\caption{This is the caption}

\label{ex:table}

\end{table}

The table is numbered \ref{ex:table}.

\end{document}

Copyright c© 2012 Winston Chang
http://www.stdout.org/∼winston/latex/


	Introduction
	Conjectures and Proofs
	A Theorem Concerning Primes
	A Definition
	Equivalent Expressions and the Negation
	Experimentation
	Theorem and Proof

	Divisibility by Six
	A Lemma and a Theorem
	Two Proofs of a Conjecture
	A Lemma
	A Non-Constructive Proof of irrationalsnotclosed
	A Constructive Proof of irrationalsnotclosed

	A Non-Algebraic Induction Proof
	A Proof of Bijection
	Checking and Disproving Injectivity

	LaTeXCheat Sheet

