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A B S T R A C T
However, this problem could be resolved by monitoring the effective sample size and tuning the factor
for covariance inflation. In this paper, the proposed hybrid algorithm is introduced, and its performance
is evaluated through experiments with non-Gaussian observations.
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1. Introduction
The ensemble-based approach is now recognized as a valuable
tool for data assimilation in nonlinear systems. In particular, the
ensemble Kalman filter (EnKF) (Evensen, 1994; 2003) and the
ensemble square root filters (Tippett et al., 2003; Livings et al.,
2008) are widely used in various practical applications. How-
ever, since these algorithms basically assume a linear Gaussian
observation model like the Kalman filter (KF), they could give
biased or incorrect estimates when the observation is nonlinear
or non-Gaussian.

1.1. Experiment with a linear Gaussian observation

The particle filter (PF) (Gordon et al., 1993; Kitagawa, 1996;
van Leeuwen, 2009) is an ensemble-based algorithm that is ap-
plicable even in cases with nonlinear or non-Gaussian observa-
tions. However, the PF tends to be computationally expensive in
comparison with other ensemble-based algorithms. One source
of the high computational cost is the degeneracy of the ensem-
ble. In the PF, ensemble members are weighted in the manner
of the importance sampling (e.g., Liu, 2001; Candy, 2009), and
are then resampled with probabilities equal to the weights. After
resampling, many of the ensemble members are replaced by du-
plicates of some particular members with large weights. Conse-
quently, the diversity of the ensemble is rapidly lost by repeating
the resampling process. In order to achieve sufficient diversity,
the PF usually requires a huge ensemble size, which results in
high computational cost.
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Many studies have investigated maintaining the ensemble di-
versity. One approach is based on kernel density estimation,
in which a new ensemble is generated by resampling from a
smoothed empirical density function (e.g., Musso et al., 2001).
The Gaussian resampling approach (Kotecha and Djurić, 2003;
Xiong et al., 2006) and the merging particle filter (Nakano et al.,
2007) have also been devised to maintain the ensemble diver-
sity, although these methods consider only the first and second
moments rather than the shape of the PDF. Another method by
which to maintain the ensemble diversity is to improve the dis-
tribution for sampling. If we can draw samples from a distri-
bution similar to a posterior PDF, the weights would be well
balanced among the samples which would enable us to im-
prove the computational efficiency. Accordingly, several stud-
ies have attempted to improve the distribution for sampling. Pitt
and Shephard (1999) proposed the auxiliary particle filter, in
which the temporal evolution is calculated for each ensemble
member after the ensemble is resampled according to the ex-
pected score of the prediction for each ensemble member. Re-
cently, van Leeuwen (2010; 2011) proposed another algorithm
that refers to the observed data in order to obtain the distribution
for sampling. Chorin et al. (2010) and Morzfeld et al. (2012)
also took a similar approach. Papadakis et al. (2010) proposed
the weighted ensemble Kalman filter (WEnKF), in which the
distribution for sampling is obtained by the EnKF, and the sam-
ples drawn from the distribution are weighted and resampled.
Beyou et al. (2013) took the same approach but they used the
the ensemble transform Kalman filter (ETKF) (Bishop et al.,
2001; Wang et al., 2004), which is one of ensemble square root
filters, instead of the EnKF.

However, even if the ensemble diversity is well maintained
by improving the distribution for sampling, the ensemble size
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that we can use is not necessarily sufficient to represent non-
Gaussian features of the PDF. In practical applications, the en-
semble size is usually limited by the available computational
resources because a model run for each ensemble member is
costly in the forecast step. Indeed, it is not unusual that the al-
lowed ensemble size is much smaller than the system dimen-
sion. If the ensemble size N is smaller than the effective system
dimension, the ensemble would form a simplex in (N − 1)-
dimensional space (Julier, 2003; Wang et al., 2004), which is
obviously insufficient to represent the third or higher-order mo-
ments. In such a situation, the non-Gaussian features can not be
represented even using the importance sampling. In addition,
after weighting the ensemble members, some of the members
no longer effectively contribute to the estimation. This means
that the probability distribution estimation would be based on a
substantially smaller sample size than the original sample size.
Therefore, for the case in which the ensemble size is limited,
the weighting of the ensemble would not necessarily provide a
good approximation of the posterior PDF.

The approach proposed in the present paper considers such
a situation in which the forecast PDF is represented by an en-
semble of limited size less than the system dimension. Since
non-Gaussian features are not represented by the limited-sized
ensemble, the proposed approach assumes that the forecast PDF
is Gaussian. On the other hand, in the analysis step, we use a
sufficiently large number of samples to represent non-Gaussian
features of the posterior PDF. These non-Gaussian features are
represented by the importance sampling technique (e.g., Liu,
2001; Candy, 2009). An outline of the proposed approach is
illustrated in Figure 1. Before the analysis step, the forecast
PDF is represented by an ensemble of limited size that forms
a simplex. From this forecast PDF, we obtain a Gaussian pro-
posal PDF, which is similar to but not necessarily identical to
the posterior PDF. This proposal PDF is represented by a small
ensemble obtained using the ETKF. We then generate a large
number of samples from the proposal PDF, and these samples
are weighted so as to approximate the posterior PDF. If we use
the proposal PDF obtained by the ETKF, we can efficiently gen-
erate a large number of samples, which allows us to represent
non-Gaussian features of the posterior PDF using the impor-
tance sampling technique. For the next forecast step, the approx-
imation of the posterior PDF with a large number of samples is
converted into a new approximation with a small ensemble. This
small ensemble is constructed under the assumption of a Gaus-
sian distribution, but is obtained after considering the nonlin-
earity or non-Gaussianity of the observation. We can therefore
reduce the effects of the biases due to nonlinear or non-Gaussian
observation on the next forecast.

Various algorithms have been proposed that combine the PF
algorithm with a Gaussian-based algorithm, such as the KF and
EnKF. For example, several studies considered a Gaussian mix-
ture model and used the KF or EnKF to update each Gaussian
component of the Gaussian mixture model (e.g., Smith, 2007;
Hoteit et al., 2012). However, a Gaussian mixture model re-

Table 1. Results of experiments with the linear Gaussian obser-
vation model.

RMSE (σ = 0.5) RMSE (σ = 1.0)

Hybrid filter ETKF Hybrid filter ETKF

N=16 0.84 0.62 4.31 3.44
N=18 0.18 0.19 0.71 0.50
N=20 0.18 0.19 0.39 0.41
N=24 0.19 0.20 0.39 0.41
N=28 0.19 0.20 0.40 0.42
N=32 0.19 0.20 0.40 0.43
N=36 0.19 0.21 0.40 0.43

quires a large number of parameters to represent the covari-
ance matrices of each of the Gaussian components for high-
dimensional systems and would tend to require too much mem-
ory and computational resources. Although Hoteit et al. (2008)
proposed another approach that uses a mixture of Gaussian
components with the same covariance matrix, their approach
assumes a Gaussian observation model. Lei and Bickel (2011)
considered another method by which to combine the PF algo-
rithm and the EnKF algorithm, in which the ensemble is ad-
justed so as to represent the mean and covariance estimated by
weighting the members of the forecast ensemble. This approach
did not consider an asymmetric probability distribution.

The ETKF algorithms and the importance sampling tech-
nique, on which the proposed method is based, are explained
in Sections ?? and ??, respectively. Section ?? discusses how
to use the ETKF output as a proposal PDF and how to repre-
sent the posterior PDF using samples drawn from the proposal
PDF. Section ?? discusses how to approximate the posterior
PDF with a small-sized ensemble, which allows us to achieve
high computational efficiency in the forecast step. We exper-
imentally evaluate the proposed algorithm in Section ??, and
provide a summary in Section ??.

The mean vector xk|k−1 is represented by the ensemble mean
of all of the members:

xk|k−1 =
1

N

N∑
i=1

x
(i)

k|k−1. (1)

The ETKF then considers the deviation from the mean vector as

∆x
(i)

k|k−1 = x
(i)

k|k−1 − xk|k−1, (2)

∆y
(i)

k|k−1 = hk(x
(i)

k|k−1)− hk(xk|k−1), (3)

where the function hk is a nonlinear predictive observation
given a state xk, and hk(xk|k−1) denotes the ensemble mean
of the predictive observation {hk(x

(i)

k|k−1)}Ni=1 as

hk(xk|k−1) =
1

N

N∑
i=1

hk(x
(i)

k|k−1). (4)



HYBRID FILTERING ALGORITHM
3

Fig. 1. Outline of the hybrid approach proposed in the present
paper.

2. Sequential data assimilation problem

We describe the state transition of a dynamical system by the
following probability density function (PDF):

xk ∼ p(xk|xk−1) (5)

where the vector xk denotes the state of the system at time tk
(k = 1, 2, . . .). We then consider the following observation
model to describe the relationship between the system state and
the observation:

yk ∼ p(yk|xk), (6)

where yk is the observed data at time tk.
Sequential data assimilation is regarded as a problem that es-

timates the conditional PDF of the system state xk from the se-
quence of observations y1:k = {y1,y2, . . . ,yk} according to
the following recursive procedure. Suppose that the conditional
PDF at the time step tk−1, p(xk−1|y1:k−1), is given. Then, the
forecast PDF p(xk|y1:k−1) can be obtained by the following
equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1) p(xk−1|y1:k−1)dxk−1.

(7)
The observation yk is then assimilated using Bayes’ theorem to
obtain the filtered (analysis) PDF p(xk|y1:k):

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
. (8)

Filtering algorithms for sequential data assimilation estimate
the system states based on this filtered PDF. In the following,
we discuss how to obtain a good approximation of the filtered
PDF.
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