
Firstname Lastname
BSc Drinking Coffee (List Previous Degrees)

Title of the thesis
should go here,
line breaks may be
necessary

Submitted 5 August, 1984

for the degree of Doctor of Philosophy

Music Computing and Psychology Lab,

Department of Music, University of York

Supervisors:

Firstname Lastname, Firstname Lastname,
and Firstname Lastname



ii



Abstract

Summary of thesis to go here. One page maximum. Data and code related
to this thesis is available from https://osf.io/zv75h/.

If typesetting this collection of LATEX files locally (e.g., in TeXShop), you
will need to typeset the main file thesis.tex once with the ‘LaTeX’ setting se-
lected, then typeset it with the ‘BibTeX’ setting selected, then again with the
‘LaTeX’ setting selected. All paths to files are relative. The file Bibliography
→ bibliography.bib contains lots of examples of different kinds of references
(e.g., PhD theses, books, papers in conference proceedings, a chapter in an
edited book, etc.). You can remove a whole chapter at any point by com-
menting out an input command in thesis.tex (for example try turning line
135 into % \input{"Evaluation/draft"} and see what happens).

I have included a bunch of examples of mathematical typesetting in Ap-
pendix A (p. 17). The documentation called lshort.pdf by Tobias Oetiker is
also an excellent guide.

My one major piece of advice is to click ‘Recompile’ (Overleaf)
or ‘Typeset’ (e.g., TeXShop) regularly. In this way, you will catch
errors just after you make them, and not have to spend too long
finding and correcting them.

https://osf.io/zv75h/
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
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1
Introduction

General introduction, leading towards some research questions and hypothe-

ses:

Blah?

Perhaps this question can be broken down into two halves:

Question 1. Blah?

Question 2. Blah?

Interpret the questions and say how they will be addressed. In so doing,

you will give an overview of the contents of the following chapters. Remember

referencing systems, like Chapter 3, individual sections such as Sec. 4.2.2,

and Figures (please see Fig. 1.1). You can also make references to authors in

your bibliography, such as Collins (2011). Or in parentheses like this (Collins

et al., 2010, 2013). You may prefer to use a numbered system instead [1, 2],

in which case change the \bibliographystyle command from plainnat to

plain (toward the bottom of thesis.tex).



2 Introduction

!"#"

$"

Figure 1.1: A longer caption can go here. If there are multiple parts to the figure,
use something like this. (A) Caption specific to first labelled part; (B) Caption
specific to second labelled part, and so on.
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Literature review: Music representations

2.1 Musical instrument digital interface

Blah blah.

Please make sure all music examples are neatly typeset in MuseScore

(https:musescore.org). When referring to a composer for the first time,

use their full name and give their birth/death dates. Subsequent references

can use the surname only, but include initials as well if these are necessary in

order to distinguish one composer from another (for instance J.S. Bach and

J.C. Bach).

Figure 2.1 gives an example of how to refer to an excerpt of a piece.

Song titles should be in quotations, e.g., ‘Summertime’, and pieces with

descriptive titles should be in italics, such as The Rite of Spring. Permission

to use copyrighted material should be sought where necessary.

Graphs should be created with a homogeneous style in R, Matplotlib, or

Nodeplotlib. The font size for text in the plot should appear as large as the

font size in the main text.

https:musescore.org


4 Music representations
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Figure 2.1: Bars 38-43 and 131-136 from the first movement of the Piano Con-
certo no.1 by Béla Bartók (1881-1945). The brackets indicate an instance of a
real sequence. Black noteheads help to show which notes are involved. c© Copy-
right 1927 by Universal Edition. Copyright renewed 1954 by Boosey & Hawkes,
Inc., New York. Reproduced by permission.
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2.2 The generalised interval system and

viewpoints

Blah blah.

2.3 Geometric representations

Blah blah.

2.4 Some music-analytical tools

Blah blah.
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Literature review:

Discovery of patterns in music

Blah blah.
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4
Evaluation

4.1 Evaluation questions

This chapter consists of an evaluation of blah. The purpose of the evaluation

is to address the following questions:

1. Blah?

2. Blah?

4.2 Methods for answering evaluation

questions

Blah blah.

4.2.1 Participants

Blah blah.

4.2.2 Stimuli

Stimuli were prepared blah.
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4.2.3 Procedure

Temporal account of what participants did.

4.2.4 Apparatus

Any special equipment used? Describe it here.

4.3 Results

4.3.1 Answer to evaluation question 1

Blah.

4.3.2 Answer to evaluation question 2

Blah blah.

4.4 Local conclusions



4.4 Local conclusions 11

Table 4.1: Some data in a table and a longer caption. The data here are typeset
in a slightly smaller font just as an example, but the longtable command is
intended to allow for tables spreading over two or more pages.

Stim- Multicolumn! And again Once more
ulus Yes No Random Words In Titles

Hello, some neat multicolumn action
1 4.56 5.38 31.3 68.8 31.3 68.8
2 5.63 5.56 68.8 81.3 68.8 81.3

And again)
9 3.06 2.00 81.3 87.5 12.5 6.3
11 1.19 1.38 68.8 81.3 0.0 0.0
12 3.06 2.69 31.3 68.8 12.5 0.0

Yet another category
13 4.75 5.88 25.0 6.3 43.8 87.5
14 5.38 5.13 12.5 25.0 62.5 56.3
18 5.25 5.63 12.5 6.3 75.0 68.8

And so on

20 4.75 4.38 25.0 62.5 56.3 25.0
21 2.81 2.69 75.0 81.3 6.3 0.0
24 3.13 3.19 68.8 93.8 18.8 0.0

And so on
25 2.00 1.81 75.0 81.3 0.0 0.0

Finally, the last one!

28 3.25 2.88 43.8 81.3 25.0 0.0
31 2.75 2.89 50.0 87.5 0.0 0.0
32 2.50 2.75 81.3 93.8 12.5 0.0
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Table 4.2: Contrasts for two ANOVAs, a longer caption. The magnitude of
the number indicates the significance of this difference in stylistic success. One,
two, and three asterisks indicate significance at the .05, .01, and .001 levels
respectively, testing a two-sided hypothesis using a t(26) distribution.

Concertgoers

Source System B System C System D System E System F

System A 0.429 0.844 0.844 2.500∗∗∗ 2.865∗∗∗

System B . 0.830 0.830 4.145∗∗∗ 4.875∗∗∗

System C . . 0.000 3.477∗∗∗ 4.242∗∗∗

System D . . . 3.477∗∗∗ 4.242∗∗∗

System E . . . . 0.765

F (5, 26) = 10.12, p = 1.827× 10−5, s = 0.825

Experts

Source System B System C System D System E System F

System A 0.421 0.417 0.677 2.875∗∗∗ 3.083∗∗∗

System B . −0.008 0.468 4.485∗∗∗ 4.865∗∗∗

System C . . 0.499 4.712∗∗∗ 5.111∗∗∗

System D . . . 4.212∗∗∗ 4.612∗∗∗

System E . . . . 0.399

F (5, 26) = 12.16, p = 3.874× 10−6, s = 0.904
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Conclusions and future work

5.1 Conclusions

Blah blah.

5.2 Future work

Blah blah.
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A
Mathematical definitions

This is an appendix to demonstrate the style for typesetting definitions,

equations, etc. Please use it to find examples of mathematical typesetting

that you need in the thesis. Be sure to remove it afterwards: it is pretty much

an exact copy of one of the appendices in my PhD thesis (Collins, 2011).

Definition A.1. Vector. A vector is a collection of numbers, separated by

commas and enclosed by parentheses ‘(’ and ‘)’. A vector may contain the

same number more than once. It is standard to use lowercase bold letters to

denote vectors. �

Example A.2. Here are some examples of vectors:

a = (1, 2, 3), b = (2, 1, 3), c = (c1, c2, . . . , cn). (A.1)

The vector c demonstrates the general notation for a vector, that is one to

which numerical values have not been assigned. The ellipsis ‘. . .’ is useful for

saving time and space. The vectors a and b from (A.1) are not considered to

be equal: they contain the same numbers, but in different orders. In general,

two vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) are said to be equal

if m = n and xi = yi, where i = 1, 2, . . . ,m. �
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Definition A.3. Matrix, matrix operations, and array. Whereas a

vector is a list of numbers, a matrix is a table of numbers, consisting of m

rows and n columns. The entry in the ith row, jth column of a matrix A is

denoted (A)i,j or ai,j. So

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n


. (A.2)

The sum of two m × n matrices A and B is defined by (A + B)i,j =

(A)i,j + (B)i,j. Similarly for subtraction. For a constant λ ∈ R, λA is

defined by (λA)i,j = λ(A)i,j. The diagonal of an m × n matrix A is a list

consisting of the elements ai,i, where 1 ≤ i ≤ min{m,n}. The upper triangle

of A is a list consisting of the elements ai,j, where 1 ≤ i ≤ min{m,n} and

i < j. The rth superdiagonal of a A is a list consisting of the elements ai,i+r,

where 1 ≤ i ≤ n− r.

The product of A, an m× n matrix, and B, an n× p matrix, is written

AB, an m× p matrix, and its ith row, jth column is given by

(AB)i,j =
n∑
k=1

ai,kbk,j. (A.3)

Other matrix operations include transposition and inversion. For anm×n

matrix A, the transpose is written AT , and its ith row, jth column is given

by

(AT )i,j = (A)j,i. (A.4)
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The identity matrix I is an m × m matrix such that (I)i,j = 1 for i = j,

and (I)i,j = 0 otherwise. For A, an m × n matrix, under certain conditions

(not specified here) there exists B, an n×m matrix, such that AB = I. In

which case, we say that B is the matrix inverse of A, and use the notation

A−1 = B.

A one-dimensional array is a vector; a two-dimensional array is a matrix.

It is possible to extend the concept of an array to d dimensions, although

such arrays are not easily displayed on paper, and the index notation be-

comes unwieldy. Let us consider the case d = 3. We can define A(k) to be an

m×n matrix with ith row, jth column denoted ai,j,k, and imagine stacking p

matrices A(1),A(2), . . . ,A(p) back to back to form an m×n×p block of num-

bers. If we denote the stacked matrices by A, then A is a three-dimensional

array.

In Chapter 3, we might use the notation

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


(A.5)

for a three-dimensional array. That is, the element ai,j,k of the array A can

be thought of as the kth element of the vector ai,j. �

Definition A.4. String. A string is a collection of alphabetic characters

enclosed by quotation marks ‘ and ’. For musical purposes, other admissible

characters in a string are the accidental symbols ‘\’, ‘]’, ‘[’, ‘ C’, and ‘[[’, as

well as the space symbol ‘ ’. Similar to vectors, a string may contain the same
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character more than once and it is standard to use lowercase bold letters to

denote strings. �

Example A.5. Here are some examples of strings:

s = ‘Piano’, t = ‘Violin I’, u = ‘ATGCAACT’, v = ‘G]’. (A.6)

The comments in Example A.2 about general notation, the use of ellipses,

and equality apply also to strings. �

Definition A.6. Concatenation. For two strings s = ‘s1s2 · · · sm’ and

t = ‘t1t2 · · · tn’, the notation conc(s, t) is used to mean the concatenation of

the two strings, that is conc(s, t) = ‘s1s2 · · · smt1t2 · · · tn’. �

Definition A.7. List and set. A list is a collection of elements. Admissible

elements of a list are numbers, vectors, strings, sets (see below), and lists

themselves. Like vectors, the elements of a list are separated by commas and

enclosed by parentheses ‘(’ and ‘)’. For a list, the order of elements matters

as far as equality is concerned. A list may contain the same element more

than once. It is standard to use uppercase italic letters to denote lists, and

lowercase italic letters to denote their elements.

A set is a collection of elements. Admissible elements of a set are numbers,

vectors, strings, lists, and sets themselves. The elements of a set are separated

by commas and enclosed by curly brackets ‘{’ and ‘}’. Unlike vectors, strings,

and lists, a set is unordered as far as equality is concerned, and must not

contain repeated elements. As with lists, it is standard to use uppercase italic

letters to denote sets, and lowercase italic letters to denote their elements.

The notation a ∈ A is used to mean a is an element of the set A. A set A
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is said to be a subset of a set B if for each a ∈ A, a ∈ B. Two sets A and

B are said to be equal if A is a subset of B, and B is a subset of A. The

notation A ⊂ B is used to mean that A is a subset of B but not equal to it,

and A ⊆ B to mean A is a subset of B or equal to it. �

Example A.8. Here is an example of a list:

L = (3, 4, a, 5, 3, (2,b), ‘Viola’) , (A.7)

and here are several examples of sets:

A = {2, 1, 3}, B = {4, 3, 2}, C = {1, 3, 2}, D = {d1,d2, . . . ,dn}.

(A.8)

So A = C. Eventually I will run out of letters to represent numbers and sets,

in which case the Greek alphabet may also be employed, as well as some kind

of indexing system, as with D in (A.8). Unless stated otherwise, definitions

are refreshed with each new numbered equation. That is, a and b from (A.7)

do not bear any relation to a and b from (A.1). In fact, each could be a

vector or a string. �

Definition A.9. Union, intersection, set difference, and Cartesian

product. The union of two sets A and B, written A ∪ B, is the set of

all elements x such that x ∈ A or x ∈ B. The previous sentence can be

expressed as set notation:

A ∪B = {x : x ∈ A or x ∈ B}. (A.9)

The ‘or’ is inclusive, meaning it is acceptable for x to be in both A and B.
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The intersection of two sets A and B, written A ∩ B, is the set of all

elements x such that x ∈ A and x ∈ B. That is,

A ∩B = {x : x ∈ A and x ∈ B}. (A.10)

The set difference of two sets A and B, written A\B, is the set of all

elements x such that x ∈ A and x /∈ B, where ‘/∈’ means ‘not in’. That is,

A\B = {x : x ∈ A and x /∈ B}. (A.11)

The Cartesian product of two sets A and B, written A×B, is the set of

all lists (a, b) such that a ∈ A and b ∈ B. That is,

A×B = {(a, b) : a ∈ A, b ∈ B}. (A.12)

Each of these definitions (union, intersection, and Cartesian product) extend

naturally to n sets A1, A2, . . . , An. For instance,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.

(A.13)

Sometimes, Cartesian products over the same set are abbreviated. For in-

stance, A× A× A = A3. �

Example A.10. Taking the definitions of A and B from (A.8),

A ∪B = {1, 2, 3, 4}, A ∩B = {2, 3}, A\B = {1}. (A.14)
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Again taking the definition of A from (A.8), and letting B = {‘Fl’, ‘Hn’},

A×B = {(1, ‘Fl’), (1, ‘Hn’), (2, ‘Fl’), (2, ‘Hn’), (3, ‘Fl’), (3, ‘Hn’)} . (A.15)

�

Definition A.11. Function. A function, represented by an italic letter such

as f or a non-italic short word such as max or cos, is a collection of rules that

describe how elements of one set A called the domain are mapped to elements

of another set B. A mathematical shorthand for the previous sentence is

f : A → B. The set denoted f(A) and defined by f(A) = {f(a) : a ∈ A} is

called the image of the function. �

Example A.12. With A and B defined as in (A.8), an example of a function

is

f(a) =


2, if a = 1,

3, if a = 2,

4, if a = 3.

(A.16)

The mathematics ‘f(a)’ is read ‘f of a’. Convention stipulates that the

argument, an element a of the domain A, is placed within parentheses or

square brackets to the right of the function name, in this case f . The function

states that 1 ∈ A maps to 2 ∈ B, 2 ∈ A maps to 3 ∈ B, and 3 ∈ A maps to

4 ∈ B. Alternatively, one could write f(1) = 2, f(2) = 3, and f(3) = 4. It

would be more concise (and therefore preferable) to define f : A→ B by

f(a) = a+ 1, a ∈ A. (A.17)

Such concise definitions of a function are not always possible. For instance,
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with A and B defined as in (A.8), let g : A→ B be given by

g(a) =


2, if a = 1,

3, if a = 1,

2, if a = 2.

(A.18)

This function defies attempts at concision. �

Definition A.13. Well defined, onto, one-to-one, bijective, and in-

vertible. A function f : A→ B is said to be well defined if the mapping of

each element a ∈ A to b ∈ B is unambiguous. (For example, f in A.16 is well

defined, whereas g in A.18 is not well defined, as it is unclear whether 1 ∈ A

should map to 2 ∈ B or 3 ∈ B.) If for each element b ∈ B of a function

f : A → B, there exists (at least) one elment a ∈ A such that f(a) = b,

then f is said to be onto. Another property that a function f : A → B

might exhibit is one-to-oneness. If for each element a1 ∈ A, there is no other

element a2 ∈ A such that f(a1) = f(a2), then f is said to be one-to-one.

A function f : A→ B that is both one-to-one and onto is called bijective.

A function f : A → B is said to be invertible if there exists a function

f−1 : B → A such that f(a) = b if and only if f−1(b) = a. It can be shown

(but will not be shown here) that a function f is invertible if and only if it

is bijective. �

Example A.14. Here are some more examples of functions, exhibiting var-
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ious combinations of one-to-one and onto properties.

f1 : R→ R, by f1(x) = x2, (A.19)

f2 : Z→ Z, by f2(m) = m3, (A.20)

f3 : R2 → R, by f3 [(x, y)] = x+ y, (A.21)

f4 : R→ R, by f4(x) = x3, (A.22)

f5 : Rn → R, by f5[(x1, x2, . . . , xn)] = 1
n
(x1 + x2 + · · ·+ xn), (A.23)

f6 : Rn → R, by f6[(x1, x2, . . . , xn)] = (x1 · x2 · · ·xn)(1/n), (A.24)

f7 : R→ [−1, 1], by f7(t) = t− t3/3! + t5/5!− t7/7! + · · · , (A.25)

f8 : R→ [−1, 1], by f8(t) = 1− t2/2! + t4/4!− t6/6! + · · · . (A.26)

The function f1 is neither one-to-one nor onto. Both 12 and (−1)2 equal 1,

so f1 is not one-to-one. There is no real number x such that x2 = −1, so f1

is not onto. Without further explanation, f2 is one-to-one but not onto, f3

is not one-to-one but is onto, and f4 is both one-to-one and onto. None of

the functions f5, f6, f7, f8 are one-to-one, but they are all onto. The function

f5 is the arithmetic mean, and f6 is the geometric mean, where ‘·’ is a more

accepted sign than ‘×’ for multiplying numbers. Writing out the functions

(A.23)-(A.26) in full each time can be cumbersome, so a shorthand called

sigma notation is used. For example, (A.23) can be re-written as

f5(x) =
1

n

n∑
i=1

xi, (A.27)

which reads ‘f5 of the vector x equals 1 divided by n times the sum from i
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equals 1 to i equals n of xi’. The arithmetic mean of a vector x is sometimes

denoted x. Similarly,

f6(x) =

(
n∏
i=1

xi

)(1/n)

, (A.28)

It is harder to cajole the functions f7 and f8 into sigma notation, but here

they are:

sin(t) = f7(t) =
∞∑
i=1

(−1)i−1

(2i− 1)!
t2i−1, (A.29)

cos(t) = f8(t) =
∞∑
i=0

(−1)i

(2i)!
t2i. (A.30)

These functions are shown with their special names, sin (short for sine) and

cos (short for cosine) respectively. �

Definition A.15. Combination of functions. For two functions f : A→

B and g : B → C, the combination f ◦ g : A → C is defined by g(f(a)),

where a ∈ A. For n functions f1 : A0 → A1, f2 : A1 → A2, . . . , fn :

An−1 → An, the combination f1 ◦ f2 ◦ · · · ◦ fn : A0 → An is defined by

fn (fn−1 (· · · (f2 (f1 (a0))) · · · )), where a0 ∈ A0. Often this is called compo-

sition of functions, but the term combination will be used here, to avoid

confusion with musical composition. �

Example A.16. Let f1 : R+ → R+ be defined by f1(a0) = 2π440a0, let f2 :

R+ → [−1, 1] be defined by f2(a1) = sin(a1), and let f3 : [−1, 1]→ [−0.7, 0.7]
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be defined by f3(a2) = 0.7a2. Then

f1 ◦ f2 ◦ f3(a0) = f3 (f2 (f1 (a0))) (A.31)

= 0.7 sin (2π440t) (A.32)

= 0.7

(
∞∑
i=1

(−1)i−1

(2i− 1)!
(2π440a0)

2i−1

)
. (A.33)

�

Definition A.17. Binary operator. A binary operator is a function f :

A2 → A. It is common to see elements of the argument for a binary operator

written either side of the function symbol, rather than to the right. That

is, x + y is equivalent to and more common than f3[(x, y)], where f3 was

defined in (A.21). The general symbol for a binary operator is ‘◦’, so one

might see x ◦ y. This should not be confused with the same symbol used

for combinations of functions (Def. A.15). Sometimes the symbol is dropped

altogether, so xy = x ◦ y. Apart from addition over the real numbers, other

examples of binary operators include subtraction and multiplication. �

Definition A.18. Modulo arithmetic. It can be shown (but will not be

shown here) that for a ∈ N, an arbitrary integer n ∈ Z can be expressed

uniquely as n = am+ b, where b,m ∈ Z, and 0 ≤ b < a. For example, fixing

a = 12, we have 61 = 12 · 5 + 1, and −7 = 12 · (−1) + 5. This fact is used to

define a function f : (Z × N) → Za by f [(n, a)] = b, where n = am + b for

integers b,m, and 0 ≤ b < a. In words, it is said that ‘n equals b modulo a’.

For two elements x, y ∈ Za, the binary operator of addition modulo a,
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written ‘+a’, is defined by

x+a y =

 x+ y, if x+ y < a,

x+ y − a, otherwise.
(A.34)

�

Definition A.19. Group. A group (G, ◦) consists of a set G and a binary

operation ◦, such that:

1. Closure. For all x, y ∈ G, x ◦ y ∈ G.

2. Associativity. For all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z).

3. Identity. There exists e ∈ G such that e ◦ x = x ◦ e = x, for all x ∈ G.

4. Inverses. For each x ∈ G, there exists an element written x−1 such

that x−1 ◦ x = x ◦ x−1 = e. �

Example A.20. It can be verified that each of (R,+), (R∗,×), (R∗+,×),

(Q,+), (Q∗,×), (Z,+), and (Za,+a) satisfy the conditions for closure, asso-

ciativity, identity, and inverses given above, and so are groups.

Let x be defined as the clockwise rotation of a triangle about a point by

120◦, let y be the same but by 240◦, let e be the identity rotation (by 0◦), and

let the binary operator ◦ be defined as combinations of rotations, so that, for

example, x ◦ x = x2 = y. Then letting G = {e, x, y}, it can be verified that

(G, ◦) is a group.

Another group (G, ◦) consists of rotations of the cube that map vertices to

vertices. Again, the binary operator is defined as combinations of rotations.

The set G consists of twenty-four elements, one of which z is illustrated in
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Fig. A.1. The left-hand side of Fig. A.1 shows a cube with vertices labelled

ω1, ω2, . . . , ω8. In the middle of Fig. A.1, an axis is drawn through vertices

ω1 and ω7. If the cube is rotated by 120◦ about this axis as indicated by

the arrow, then the vertices assume new positions, shown on the right-hand

side of Fig. A.1. The next definition is motivated by the way in which the

vertices of the cube are affected by such rotations. �
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Figure A.1: The cube to the left has vertices labelled ω1, ω2, . . . , ω8. The cube
in the middle is subject to a rotation by 120◦ about the axis through ω1 and ω7.
The cube to the right shows the vertices in their post-rotation positions.

Definition A.21. Action of a group on a set. Let (G, ◦) be a group and

Ω be a set. We say that G acts on Ω if the function f : G× Ω→ Ω satisfies

the following conditions for each ω ∈ Ω:

1. For the identity element e ∈ G, f(e, ω) = ω.

2. For all x, y ∈ G, f (x, f(y, ω)) = f(x ◦ y, ω). �

Example A.22. If, as above, the group (G, ◦) consists of rotations of the

cube that map vertices to vertices, and Ω = {ω1, ω2, . . . , ω8} is the set of

cube vertices, then G acts on Ω. With z ∈ G defined as the rotation by 120◦

as illustrated in Fig. A.1, we have f(z, ω1) = ω1, and f(z, ω2) = ω5, and so

on.
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If there is a bijection b : Ω → G for a set Ω and a group (G, ◦), then G

acts on Ω via the function f : G×Ω→ Ω, defined by f(x, ω) = b−1(x◦ b(ω)).

�

Definition A.23. Equivalence relation. A relation on a set S is a subset

R of S × S, indicating the ordered pairs of elements of S that are related.

For (s, t) ∈ R, we write s ∼ t, meaning s and t are related.

A relation is said to be:

• Reflexive if s ∼ s for all s ∈ S.

• Symmetric if s ∼ t implies t ∼ s for all s, t ∈ S.

• Transitive if (s ∼ t and t ∼ u) implies s ∼ u for all s, t, u ∈ S.

An equivalence relation on a set S is a relation that is reflexive, symmetric,

and transitive. For an equivalence relation R on a set S, two elements s, t ∈ S

such that s ∼ t are said to be in the same equivalence class. �

Example A.24. Let S = Z, s, t ∈ S, andR be a relation on S such that s ∼ t

if s ≤ t. It can be checked that the relation is reflexive, is not symmetric,

and is transitive.

Now let S = R2 be the set of points in the plane, (sx, sy), (tx, ty) ∈ S,

and R be a relation on S such that (sx, sy) ∼ (tx, ty) if
√
s2x + s2y =

√
t2x + t2y.

In words, the point (sx, sy) is related to the point (tx, ty) if they are the

same distance from the origin. It can be checked that this is an equivalence

relation, and each equivalence class is a circle with centre the origin. �

Definition A.25. Sample correlation coefficient. The sample corre-

lation coefficient (also known as the Pearson product-moment correlation
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coefficient) of two vectors x,y ∈ Rn is a function f : (Rn × Rn) → [−1, 1]

given by

f [(x,y)] =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
. (A.35)

�

Example A.26. For the vectors x = (−8, 7, 2, 0) and y = (−5, 4, 0, 1),

the sample correlation coefficient is f [(x,y)] = 0.971. Keeping x the same

and letting z = (9,−6, 4, 4), the sample correlation coefficient is f [(x, z)] =

−0.923. Keeping x the same and letting w = (1, 0, 8,−4), the sample corre-

lation coefficient is f [(x,w)] = 0.072.

So the sample correlation coefficient measures the strength of the linear

relationship between two vectors, returning values close to 1 for a positive

linear relationship, values close to −1 for a negative linear relationship, and

values close to 0 for no linear relationship. �

Definition A.27. Countable and cardinality. A set A is said to be

countable (or countably infinite) if there exists a one-to-one function f : A→

N. Otherwise it is uncountable. A set A = {a1, a2, . . . , an} with a finite

number of elements is said to have cardinality n = |A|. �

Example A.28. The sets A = {2, 1, 3} and B = {b1, b2, . . . , bn} are count-

able. The sets Z and Q are countable. In the latter case, there is an elegant
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proof that consists of constructing the matrix

A =



1
1

1
2

1
3

1
4

1
5
· · ·

2
1

2
2

2
3

2
4

2
5
· · ·

3
1

3
2

3
3

3
4

3
5
· · ·

4
1

4
2

4
3

4
4

4
5
· · ·

5
1

5
2

5
3

5
4

5
5
· · ·

...
...

...
...

...
. . .



. (A.36)

The list (1
1
, 2
1
, 1
2
, 1
3
, 2
2
, 3
1
, 4
1
, 3
2
, . . .) is formed by tracing a line over successive

diagonals of A. If each element a
b

in the list is proceeded by −a
b
, and zero

placed at the very beginning, then the rational numbers Q have been put in

a one-to-one correspondence with the natural numbers N.

The irrational numbers I and real numbers R are uncountable. Intervals,

such as (a, b) and [a, b], are uncountable. �

Definition A.29. Sample space and event (Ross, 2006). The sample

space of an experiment, denoted S, is the set of all possible outcomes. An

event E is a subset of the sample space. The event E is said to have occurred

if the experiment’s outcome is contained in E. �

Example A.30. Ross (2006). In an experiment that consists of rolling

two dice, the sample space consists of thirty-six vectors

S =
{

(i, j) : i, j ∈ {1, 2, . . . , 6}
}
, (A.37)

where the outcome (i, j) occurs if i appears on the leftmost die and j on the
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rightmost die.

In an experiment that consists of measuring the lifetime of a transistor

in hours, the sample space consists of all nonnegative real numbers

S = {x ∈ R : x ≥ 0}. (A.38)

�

Definition A.31. Union, intersection, complement, and mutual ex-

clusivity (Ross, 2006). The union and intersection of two sets were defined

in Def. A.9. These definitions apply also to events, and can be extended from

two to a countable number of events using a form of sigma notation (cf. p. 25)

as follows. If E1, E2, . . . are events, the union of these events, denoted by⋃∞
i=1Ei, is defined to be that event consisting of all outcomes that are in

Ei for at least one value of i, where i = 1, 2, . . .. Similarly, the intersection

of these events, denoted by
⋂∞
i=1Ei, is defined to be the event consisting of

those outcomes that are in all of the events Ei, where i = 1, 2, . . ..

For an event E, the event E{, called the complement of E, contains all

events in the sample space S that are not in E. Recalling the definition of

set difference (Def. A.9), E{ = S\E.

For two events E and F , if E ∩ F = ∅, where ∅ is the empty set, then E

and F are said to be mutually exclusive. �

Axioms A.32. Axioms of probability (Ross, 2006).

1. For an experiment with sample space S, and an arbitrary event E ⊆ S,

there exists a well defined function P : E → [0, 1].

2. P(S) = 1.
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3. For arbitrary, mutually exclusive events E1, E2, . . ., that is Ei ∩Ej = ∅

when i 6= j,

P

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

P(Ei). (A.39)

The notation P(E) is referred to as the probability of the event E. Results

such as P(E{) = 1− P (E) can be derived from the axioms. �

Example A.33. If two fair dice are rolled, what is the probability that the

sum of the upturned faces equals 8?

Solution. The state space for rolling two dice was given in Example

A.30, and the events of interest are E1 = (2, 6), E2 = (3, 5), E3 = (4, 4),

E4 = (5, 3), and E5 = (6, 2). The five events are mutually exclusive and

equiprobable, each with probability 1
36

. So the desired probability is 5
36

. �

Definition A.34. Conditional probability and Bayes’ formula (Ross,

2006). For two events E and F , if P(F ) > 0, then

P(E | F ) =
P(E ∩ F )

P(F )
. (A.40)

The left-hand side of this equation reads ‘the probability that the event E

occurs given (or conditional on) the event F having occurred’.

Now suppose that F1, F2, . . . , Fn are mutually exclusive events such that⋃n
i=1 Fi = S, where S is the sample space. Then for some event E, it can be

shown (but will not be shown here) that

P(E) =
n∑
i=1

P(E | Fi)P(Fi). (A.41)

Equation (A.41) is sometimes called the law of total probability.
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Bayes’ formula. With E and F1, F2, . . . , Fn defined as above,

P(Fj | E) =
P(E ∩ Fj)

P(E)
(A.42)

=
P(E | Fj)P(Fj)∑n
i=1 P(E | Fi)P(Fi)

, (A.43)

where j ∈ {1, 2, . . . , n} is arbitrary. Equation (A.43), Bayes’ formula, follows

from (A.40) and (A.41). �

Example A.35. Adapted from Ross (2006). A note is played and a

listener is asked to declare the pitch of the note. The listener is able to

try out (play) one pitch before answering, and is told of three equally likely

possibilities. We assume the listener is competent to the extent that if they

try out an incorrect pitch, they will not declare that pitch. Let 1−βi denote

the probability that the listener tries out and declares the ith pitch to be that

of the note, when in fact this is correct, i = 1, 2, 3. The quantities β1, β2, β3

are sometimes referred to as overlook probabilities. What is the conditional

probability that the ith pitch is that of the note, given the listener tries out

but does not declare the first pitch to be that of the note?

Solution. Let Fi, i = 1, 2, 3, be the event that the ith pitch is that of the

note, and let E be the event that the listener tries out but does not declare
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the first pitch to be that of the note. From Bayes’ formula (A.43),

P(F1 | E) =
P(E ∩ F1)

P(E)
(A.44)

=
P(E | F1)P(F1)∑3
i=1 P(E | Fi)P(Fi)

(A.45)

=
β1 · 13

β1 · 13 + 1 · 1
3

+ 1 · 1
3

(A.46)

=
β1

β1 + 2
. (A.47)

For j = 2, 3,

P(Fj | E) =
P(E ∩ F1)

P(E)
(A.48)

=
1 · 1

3

β1 · 13 + 1 · 1
3

+ 1 · 1
3

(A.49)

=
1

β1 + 2
. (A.50)

It is worth pointing out that the amount in (A.47) is less than one third, and

the amount in (A.50) is more than one third. This makes intuitive sense:

if the listener tries out but does not declare the first pitch, then the initial

probabilities of the ith pitch being correct (= 1
3
, i = 1, 2, 3) are updated

in favour of the second and third pitches. Also, the closer the overlook

probability β1 is to one, the closer the amounts in (A.47) and (A.50) are to

one third. �

Definition A.36. Independent events (Ross, 2006). Two events E and

F are said to be independent if P(E ∩ F ) = P(E) · P(F ). Two events E and

F that are not independent are said to be dependent.
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The events E1, E2, . . . , En are said to be independent if for any subset

{Ei1 , Ei2 , . . . , Eim} of them,

P

(
m⋂
j=1

Eij

)
= P(Ei1) · P(Ei2) · · ·P(Eim). (A.51)

�

Example A.37. Ross (2006). Suppose, as in Example A.30, that two fair

dice are rolled. Let E be the event that the sum of the dice is 8, and F be

the event that the leftmost dice shows 3. Then

P(E ∩ F ) = P
(
{(3, 5)}

)
= 1

36
. (A.52)

Having determined P(E) = 5
36

in Example A.33,

P(E) · P(F ) = 5
36
· 1
6

= 5
216
. (A.53)

Therefore, E and F are dependent. Suppose we let E be the event that the

sum of the dice is 7. Now

P(E ∩ F ) = P
(
{(3, 4)}

)
= 1

36
, (A.54)

and

P(E) · P(F ) = 1
6
· 1
6

= 1
36
. (A.55)

Therefore, E and F are independent. �

Definition A.38. Discrete random variable and probability mass

function (Ross, 2006). Let S be a sample space and E1, E2, . . . be mutually
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exclusive events such that
⋃∞
i=1Ei = S. A discrete random variable is a

function X : Ei → R, well-defined for each value of i = 1, 2, . . .. An arbitrary

element of the image of X is denoted by a lowercase letter, such as x, or

x1, x2, . . . if there are many. When an event Ei from the sample space is

observed as the outcome, it is said that the random variable X takes or

assumes a value x. The probability of the event Ei, denoted P(Ei), is equal

to the probability that X takes or assumes the value x, written P(X = x).

The probability mass function of a discrete random variable X is defined

by

p(x) = P(X = x). (A.56)

The domain of the function p is the countable set of values {x1, x2, . . .} that

X can take. A probability mass function inherits properties from the Axioms

of Probability (cf. Def. A.32). First, p(xi) ≥ 0, where i = 1, 2, . . .. Second,∑∞
i=1 p(xi) = 1. �

Example A.39. Ross (2006). Often we are interested in some function

of the outcome of an experiment, rather than the actual outcome itself. For

instance, when rolling two dice, we might be interested in the sum of the two

dice, and not really concerned about the separate values of each die. Random

variables enable focus on a function of the experiment’s outcome. Letting X

be a random variable for the sum of two rolled dice, we have

P(X = 2) = P
(
{(1, 1)}

)
= 1

36
, (A.57)

P(X = 3) = P
(
{(1, 2), (2, 1)}

)
= 1

18
, (A.58)

P(X = 4) = P
(
{(1, 3), (2, 2), (3, 1)}

)
= 1

12
, (A.59)
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and so on. �

Definition A.40. Bernoulli and binomial random variables (Ross,

2006). Suppose that the outcome of an experiment is either a success, in

which case the discrete random variable X takes the value 1, or a failure, in

which case X takes the value 0. Then the probability mass function of X is

p(x) = P(X = x) =

 1− θ, if x = 0,

θ, if x = 1,
(A.60)

where 0 ≤ θ ≤ 1 is the probability that the outcome of the experiment is a

success. The random variable X is called a Bernoulli random variable.

Now suppose that in n independent experiments, each experiment has a

successful outcome with probability θ, and failed outcome with probability

1 − θ. A discrete random variable Y that represents the number of suc-

cesses that occur in n experiments is called a binomial random variable with

parameters n, θ. We write Y ∼ B(n, θ) as a shorthand to mean that Y is

binomially distributed with parameters n, θ. The probability mass function

is

p(i) =

(
n

i

)
θi(1− θ)n−i, i = 0, 1, . . . , n. (A.61)

�

Definition A.41. Expectation, variance, and entropy of a discrete

random variable. Let X be a discrete random variable taking the val-

ues x1, x2, . . ., and let X have the probability mass function p. Then the
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expectation (also called the mean) of X, denoted E(X), is

µ = E(X) =
∞∑
i=1

xip(xi). (A.62)

The expectation is a weighted average of the values assumed by X. The

variance of X, denoted V(X), is

V(X) = E[(X − µ)2] = E(X2)− µ2. (A.63)

The variance quantifies the average square distance between X and its mean.

Sometimes, we talk about a probability mass function as a probability vec-

tor. That is, the vector p with ith element pi = p(xi), where i = 1, 2, . . .. For

the discrete random variable X with probability vector p = (p1, p2, . . . , pn),

the entropy of X, denoted H(X), is

H(X) = −
n∑
i=1

pi log2 pi, (A.64)

where − log2 pi is known as the information content (Shannon, 1948). The

entropy of a random variable quantifies the uncertainty associated with its

outcome, with small positive values for low uncertainty, and large positive

values for high uncertainty. �

Example A.42. Suppose that X is a discrete random variable representing

the sum of two rolled, fair dice. In Example A.39 we began calculating the

probability mass function of X, which will now be given as a probability

vector,

p =

(
1

36
,

1

18
,

1

12
,
1

9
,

5

36
,
1

6
,

5

36
,
1

9
,

1

12
,

1

18
,

1

36

)
. (A.65)
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After some calculations, we find E(X) = 7, V(X) ≈ 5.83, and H(X) ≈ 3.27.

Now suppose that Y is a discrete random variable representing the sum

of two rolled dice, where one die is fair and the other biased towards higher

scores, so that it shows 1, 2, . . . , 6 with respective probabilities 1
32
, 1
32
, 1
16
, 1
8
, 1
4
, 1
2
.

The probability vector q for Y is

q =

(
1

192
,

1

96
,

1

48
,

1

24
,

1

12
,
1

6
,

31

192
,

5

32
,

7

48
,
1

8
,

1

12

)
. (A.66)

After some calculations, we find E(Y ) ≈ 8.53, V(Y ) ≈ 4.57, and H(Y ) ≈

3.07. The biased die causes the expected value of Y to increase slightly

compared with that of X. At the same time, the variance and entropy of Y

are smaller respectively than the variance and entropy of X.

In general, it is possible to redistribute the mass of a probability vector

p, giving q, such that for the corresponding random variables X and Y ,

V(X) < V(Y ), and H(X) > H(Y ). �

Example A.30 contains an experiment where the lifetime of a transistor

is measured in hours. The sample space was all nonnegative real numbers.

The nonnegative real numbers, R+, are uncountable (cf. Def. A.27), just like

the real numbers, R. Discrete random variables cannot be used to model

the exact outcome of such experiments, as their image must be a countable

set. Another type of random variable is required, called a continuous random

variable.

Definition A.43. Continuous random variable and probability den-

sity function (Ross, 2006). We say thatX is a continuous random variable

if there exists a nonnegative function f , defined for all x ∈ R, such that for
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each set A ⊆ R,

P(X ∈ A) =

∫
A

f(x) dx, (A.67)

that is, the area between the curve f(x) and the x-axis over which A is

defined. The function f is known as the probability density function of X. It

has the property that

1 = P(X ∈ R) =

∫ ∞
−∞

f(x) dx, (A.68)

as X must belong to some interval.

Probability statements concerning X are answered in terms of f . For

example, the probability that X takes a value in the interval [a, b] is given

by

P(a ≤ X ≤ b) =

∫ b

a

f(x) dx. (A.69)

Definitions for the expectation, variance, and entropy of a continuous ran-

dom variable are analogous to the discrete definitions, replacing sums with

integrals. �

Example A.44. The lifetime of a transistor measured in hours can be mod-

elled by a continuous random variable X with probability density function

f(x) =


1
µ
e−x/µ, if x ≥ 0,

0, if x < 0,
(A.70)

where µ > 0 is an arbitrary constant. Supposing a value of µ = 100, what is

the probability that a transistor will work between 80 and 140 hours before

breaking?
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Solution.

P(80 ≤ X ≤ 140) =

∫ 140

80

1

100
e−x/100 dx (A.71)

= −e−x/100
∣∣140
80

(A.72)

= e−0.8 − e−1.4 (A.73)

≈ .203. (A.74)

�

Definition A.45. Normal random variable (Ross, 2006). We say that

X is a normal random variable, or that X is normally distributed, with

parameters µ and σ2 if the density of X is given by

f(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

, (A.75)

where x ∈ R. The notational shorthand X ∼ N(µ, σ2) means that X is

normally distributed with parameters µ and σ2. �

Questions of a statistical nature are often answered in terms of the normal

distribution, or in terms of related distributions, such as the t-distribution

or F -distribution. There is an established method called hypothesis testing

for stating and addressing questions concerning statistical significance. The

following example gives a flavour for hypothesis tests, with more details being

available elsewhere (Lunn, 2007a; Daly et al., 1995).

Example A.46. A previously unknown collection of Baroque ’cello concertos

claimed to be by Antonio Vivaldi (1678-1741) is bequeathed to a library. The
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Table A.1: The rhythmic density of various opening movements from known
and supposed Vivaldi ’cello concertos. Data fabricated for the purpose of the
example.

Bequeathed concertos Library concertos

6.44 1.86 5.14 3.15 6.15
3.66 3.67 4.19 4.29 5.29
4.58 4.04 5.37 4.46 5.81
5.06 3.32 4.75 5.33 4.42
3.09 4.69 4.82
5.14 6.76 5.10

librarian wishes to test this claim, so for each bequeathed concerto and for

each Vivaldi ’cello concerto already held by the library, they calculate the

rhythmic density of the opening movement. We can assume that rhythmic

density is an appropriate aspect of the music to quantify, and fabricate some

data for the purpose of the example (see Table A.1). The librarian wants

to know whether these two sets of measurements constitute evidence of a

different composer. The so-called null hypothesis (sometimes denoted H0)

is that the two samples have underlying distributions with the same mean.

The alternative hypothesis (or H1) is that the two samples have underlying

distributions with different means.

The difference between the means of each sample is −0.897 = 4.086 −

4.983. Is this difference significant, taking into consideration the size of and

variation within each sample? We will not go into the details, but the differ-

ence in means is weighted by 0.416, and the ratio −0.897/0.416 ≈ −2.155 is

supposed to be an observation from a t-distribution (denoted T and similar

to the normal distribution in Def. A.45) with twenty-four so-called degrees
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of freedom. It can be checked that p = P(|T | > 2.155) = .041, so there is

only a probability of .041 that the two samples have underlying distributions

with the same mean. A typical cutoff point for rejecting the null hypothesis

in favour of the alternative is α = .05. As we have observed a p-value less

than α, the null hypothesis is rejected. Giving a musical interpretation of

this statistical result, there is evidence that the two sets of concertos may be

by different composers. �

Example A.47. Multiple linear regression. We may have cause to con-

sider linear models of the form

y = α + β1x1 + β2x2 + · · ·+ βpxp, (A.76)

where y is the rating given to an aspect of a music excerpt, x1, x2, . . . , xp are

variables for the excerpt under consideration, and α, β1, β2, . . . , βp are regres-

sion coefficients. Suppose that listeners are presented with already-discovered

repeated patterns from one or more pieces of music, and asked to rate each

pattern’s musical importance on a scale from 1 (not at all important) to 10

(highly important). The rating given by a listener, which is more generally

known as the response, is represented by y in (A.76). The variable x1 could

represent cardinality—the number of notes contained in one occurrence of a

pattern. The next variable x2 could represent the number of occurrences of

a pattern in a particular excerpt, etc. Linear means linear in the coefficients,

so linear models are a very broad family of functions. For instance, both of

rating = α + β1cardinality·occurrences, (A.77)

rating = α + β1cardinality + β2occurrences2 (A.78)
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are linear models.

In (A.76), the rating y is known, as are the values of the variables x1,

x2, . . ., xp, so the aim is to estimate the coefficients θ = (α, β1, β2, . . . , βp).

This is done by considering a linear regression model

Yi = α + β1xi,1 + β2xi,2 + · · ·+ βpxi,p︸ ︷︷ ︸
(†)

+εi, i = 1, 2, . . . , n. (A.79)

Capital letters for the n ratings Y1, Y2, . . . , Yn indicate that these are ran-

dom variables. On the right hand side there is an expression (†) similar

to that in (A.76). The notation has been altered so that xi,j is the value

of the jth variable taken by the ith observation, where i = 1, 2, . . . , n, and

j = 1, 2, . . . , p. These are often referred to as the explanatory variables or pre-

dictors, as they ‘explain’ the response (ratings). The terms ε1, ε2, . . . , εn are

non-observable, assumed to be independent and normally distributed random

variables (cf. Def. A.45) with zero mean and constant variance. Sometimes

they are referred to as departures, as their inclusion in (A.79) adjusts for

(†) ‘departing’ (being different) from Yi. More commonly though, they are

called residual errors. The coefficients θ = (α, β1, β2, . . . , βp) are estimated

so as to minimise the sum of squares of the departures,
∑n

i=1 ε
2
i .

Continuing with the example of rating already-discovered patterns, sup-

pose that a listener rates the musical importance of five patterns as 9, 2, 8,

4, and 1, and that these patterns have respective cardinalities 15, 3, 4, 7, 3,

and respective occurrences 3, 2, 5, 3, 2. This information can be expressed
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as

9 = α + 15β1 + 3β2 + ε1, (A.80)

2 = α + 3β1 + 2β2 + ε2, (A.81)

8 = α + 4β1 + 5β2 + ε3 (A.82)

4 = α + 7β1 + 3β2 + ε4 (A.83)

1 = α + 3β1 + 2β2 + ε5. (A.84)

The ratings y1, y2, . . . , y5 are the observed values of the responses Y1, Y2, . . .,

Y5. The above simultaneous equations can be expressed more concisely as

y = Xθ + ε, (A.85)

where

y =



9

2

8

4

1


, X =



1 15 3

1 3 2

1 4 5

1 7 3

1 3 2


, θ =


α

β1

β2

 , ε =



ε1

ε2

ε3

ε4

ε5


. (A.86)

The matrix X is often referred to as the design matrix. As mentioned above,

the coefficients θ are estimated so as to minimise the sum of squares of

the departures,
∑n

i=1 ε
2
i . The estimated coefficients are denoted with ‘hats’,

θ̂ = (α̂, β̂1, β̂2, . . . , β̂p). For this example (and more generally) it can be shown
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(but will not be shown here) that

θ̂ = (XTX)−1XTy (A.87)

minimises
∑n

i=1 ε
2
i . Matrix transpose, multiplication, and inverses are de-

fined in Def. A.3, and will be required to understand the following regression

calculations:

XTX =


1 1 1 1 1

15 3 4 7 3

3 2 5 3 2




1 15 3

1 3 2

1 4 5

1 7 3

1 3 2


=


5 32 15

32 308 98

15 98 51

 , (A.88)

(XTX)−1 ≈


1.984 −0.053 −0.482

−0.053 0.010 0.003

−0.482 −0.003 0.168

 , (A.89)

XTy =


1 1 1 1 1

15 3 4 7 3

3 2 5 3 2




9

2

8

4

1


=


24

204

85

 , (A.90)

θ̂ =


α̂

β̂1

β̂2

 = (XTX)−1XTy

≈


1.984 −0.053 −0.482

−0.053 0.010 0.003

−0.482 −0.003 0.168




24

204

85

 ≈

−4.126

0.449

2.017

 .

(A.91)
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Therefore, in this example, the empirically derived formula for rating pattern

importance is

rating = −4.126 + 0.449 · cardinality + 2.017 · occurrences. (A.92)

The model on which this formula is based is flawed: too few data (n = 5);

only two explanatory variables considered (cardinality and occurrences); no

assumptions about ε1, ε2, . . . , ε5 were checked. It gives a flavour, however,

for fitting a statistical model and deriving a formula empirically.

Example A.48. Analysis of variance (ANOVA). ANOVA is a special

case of multiple linear regression (see above), where the predictors are binary

variables that represent different blocks and/or treatments of observations.

For instance, suppose that twelve people participate in a study on aural

music skills, which is intended to investigate the efficacy of a new aural skills

training method. Using a pre-training aural test, the participants are divided

(by the median test score) into two blocks of six skilled and six unskilled

participants. Within each block, the first two randomly selected participants

undertake no aural skills training, the next two receive training according to

an existing method called the Kodály Method (Choksy, 1974), and the last

two participants receive training according to a new method called Augment.

The different types of training are referred to as treatments. The performance

of participants is assessed by a post-training aural test, and the response

variable we are considering for each participant is labelled improvement :

post-training test score minus pre-training test score. The design matrix for
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the regression will be



baseline skilled kodály augment

1 1 0 0 0

2 1 0 0 0

3 1 0 1 0

4 1 0 1 0

5 1 0 0 1

6 1 0 0 1

7 1 1 0 0

8 1 1 0 0

9 1 1 1 0

10 1 1 1 0

11 1 1 0 1

12 1 1 0 1



= X. (A.93)

Regression calculations analogous to (A.87)-(A.91) can be performed to

derive a formula for the improvement between post- and pre-training aural

test scores, based on whether a participant was skilled or unskilled, and

whether they received no training, training in the Kodály Method, or training

in the Augment Method. The formula will be

improvement = α + β1 · skilled + β2 · kodály + β3 · augment, (A.94)

and so-called contrasts, such as βj − βi, will tell us about the effectiveness of

one block or treatment over another. For example, if β3 − β2 is significantly

greater than zero, this constitutes evidence that the new Augment Method
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is more effective for aural skills training than the Kodály Method. As with

the previous example, this model is flawed due to too few data for the exper-

imental design, and assumptions about ε1, ε2, . . . , ε12 must be checked after

the regression.

Multiple linear regression and ANOVA are treated in much more detail

elsewhere (Lunn, 2007b; Daly et al., 1995; Davison, 2003).
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