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Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis

in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean

faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor

semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend,

sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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Foreword

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis

in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean

faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor

semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend,

sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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Chapter 1: Introduction

This dissertation focuses on the problem of bounding the difference between the two

lowest eigenvalues of Schrödinger operators, or quantum Hamiltonians, which are used to

represent the energy of the physical system.1 This difference, denoted by γ throughout,

is known as the “spectral gap” of the corresponding operator. Although of reasonably

broad mathematical interest, our primary motivation for studying this problem arises in the

context of adiabatic quantum computing. Roughly speaking, adiabatic quantum algorithms

slowly vary a quantum state that is easy to prepare into one that encodes the solution to

some computational problem [35]. Although adiabatic quantum computation can perform

universal quantum computation [1], the technique is most naturally applied to optimization

problems, our current focus. Quantum adiabatic theorems tell us precisely how slowly

our variation must progress. Understanding the speed at which the adiabatic process can

progress helps us to understand the power of the algorithm.

The dynamics of an adiabatic process, and of course all quantum processes, are gov-

erned by Schrödinger’s equation, i∂tψ(t) = H(t)ψ(t). The Hermitian operator H is known

as the Hamiltonian of the system, and we denote its spectrum λ0 ≤ λ1 ≤ λ2 . . . ≤ λN . We

call γ(s) = λ1(s)−λ0(s) the spectral gap of H(s) and let γmin = mins γ(s). If γmin > 0 we

call the Hamiltonian “gapped”. Most adiabatic theorems focus on such gapped Hamiltoni-

1In general, these Hermitian operators H are known as either Hamiltonians or Schrödinger operators,
where the term “Schrödinger operator” is preferred in the differential equations literature, seemingly because
of increased generality. Although “Hamiltonian” might imply something physical about the operator, in this
dissertation we use the two terms synonymously, as we are predominantly concerned with the mathematical
properties of such operators.

1



ans, and our goal will be to develop techniques for estimating the spectral gap given that it

is non-zero.

In this chapter we introduce the basics of adiabatic quantum computation, heat diffu-

sion, and discrete sub-stochastic processes. Certain information about all three of these

processes, in each a particular form of equilibration, can be addressed through an analysis

of the spectral gap of a corresponding operator. The primary goal of this chapter is to make

clear the connection between these three areas of study and the question of determining

the spectral gap. In Section 1.1, we will introduce the model of quantum adiabatic op-

timization and recall certain well-known theorems about adiabaticity. In Section 1.2, we

will introduce heat diffusion, its relationship to adiabatic optimization, and estimates on

the equilibration time of a heat-diffusion process. In Section 1.3, we will define a sub-

stochastic process and prove estimates on their equilibration time by relating them back to

heat diffusion. In Section 1.4, we introduce the Rayleigh quotient, or the energy associated

with a particular state, and state some of its properties. We conclude the chapter with some

general properties of the spectral gap in adiabatic optimization problems in Section 1.5.

1.1 Adiabatic Optimization

Adiabatic optimization is a strategy for quantum computing where we assume that we

are given a Hamiltonian H(T ) with ground-state φ that encodes the solution to some opti-

mization problem of interest. Our strategy is to prepare a known ground-state u(0) of some

other Hamiltonian H(0) and slowly adjust H from H(0) into H(T ) according to some con-

tinuous path H(t). The probability of success of this strategy, then, is given by how closely

our actual final state u(T ) resembles φ . In turn, this behavior is governed by the adiabatic

theorem.

A proof of the adiabatic theorem is beyond the scope of this chapter, however numerous

2



versions exist [40, 44, 60]. Some work has been done on deriving adiabatic theorems for

operators without a spectral gap [16, 17, 55], but folklore amongst most physicists remains

that a spectral gap is required for adiabatic behavior. Our interest at present, therefore, is

restricted to “gapped” adiabatic theorems. We recall what is perhaps the most widely used

adiabatic theorem adapted from Jansen, Ruskai, and Seiler [40, Theorem 4]:

Theorem 1.1 (Adiabatic theorem). Let ψ(t) be the ground state of a Hamiltonian H(t/τ).

Then, if φ(t) satisfies 
idφ

dt = H
( t

τ

)
φ(t)

φ(0) = ψ(0)

we have that

‖φ(t)−ψ(t)‖. O
(

mhmax

τγ2
min

)
where γmin = mins γ(s), m is the number of eigenvalues of H, and

hmax = sup
s

max
{
‖H(s)‖,

∥∥Ḣ(s)
∥∥,∥∥∥ ...

H (s)
∥∥∥} .

The adiabatic theorem is the primary tool for determining the runtime of an adiabatic

optimization algorithm. In particular we see that the theorem predicts convergence of a

state prepared in an initial ground-state ψ(0) to the final ground state ψ(τ) if τ ∼ γ
−2
min.

The general recipe for the adiabatic optimization algorithm, then, is to create the known

φ(0) and vary it by the conditions of Theorem 1.1 into φ(τ). By choosing τ to be suffi-

ciently large, where “large” is determined by the theorem, we can guarantee convergence in

`2-norm of the φ(τ) to the final ground-state ψ(τ). If we can construct a final Hamiltonian

H(τ) such that ψ(τ) encodes the solution to a problem of interest, we claim that we have

solved the problem.
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1.2 Heat Diffusion

Another process which depends on the spectral gap is heat diffusion. Suppose that

H ≥ 0 is a positive, semi-definite operator with spectrum 0≤ λ0 < λ1 ≤ . . .≤ λn. The heat

diffusion process for t ∈ [0,T ] with initial distribution f0 is then given by the initial-value

problem 
f (0) = f0

d f
dt =−H f .

(1.1)

If we assume that the eigenfunction of H corresponding to λi is ui, then it is a well-

known fact that eq. (1.1) has the general solution

f (t) = ∑
i

Ciuie−λit (1.2)

where the constants Ci are uniquely determined by

Ci =
f (0) ·ui

u2
i

.

Now, we wish to examine the rate at which f approaches something proportional to the

lowest eigenfunction u0, which we assume is everywhere nonzero. Also, without loss of

generality, we assume that C0 > 0, or that our initial f (0) is not completely orthogonal to

u0. What we want to consider is the rate at which our arbitrary function f approaches the

current ground state u0e−λ0t . To do so, we look at the ratio f/(u0e−λ0t). If these two states

are similar, then the ratio should be close to 1. In particular, we consider componentwise

ratios gi = ui/(C0u0) and rewrite eq. (1.2) as

f (t) =C0u0e−λ0t
∑

i

Ci

C0
gie−(λi−λ0)t . (1.3)

4



Since all gi are bounded, we find that

f (t)
C0u0e−λ0t

= ∑
i

Ci

C0
gie−(λi−λ0)t

= 1 + ∑
i>0

Ci

C0
gie−(λi−λ0)t .

Now, we derive a bound by considering the `2-norm of the difference∥∥∥∥ f (t)
C0u0e−λ0t

− 1
∥∥∥∥ =

∥∥∥∥∥∑i>0

Ci

C0
gie−(λi−λ0)t

∥∥∥∥∥
≤ ∑

i>0

∥∥∥∥Ci

C0
gie−(λi−λ0)t

∥∥∥∥
≤ ∑

i>0

∥∥∥∥Ci

C0
gi

∥∥∥∥e−γt

= Ce−γt

for some absolute constant C. Above, the second inequality follows from the fact that

λ1 ≤ λi≥1. Hence, we see that deviations from the ground state are bounded as a function

of the spectral gap γ .

In fact, because heat diffusion is equivalent to to Schrödinger evolution by the Wick

rotation2 i 7→ it, one may naturally think of the role of the gap as similar in both adiabatic

optimization and heat diffusion.

1.3 Sub-stochastic Processes

Similar to heat diffusion are sub-stochastic processes. A sub-stochastic process is a

Markov process for a population that trends almost surely to death [27, 29]. Although less

studied than traditional Markov processes, sub-stochastic processes have broad applications

from ecology and population dynamics to classical algorithms [47, 49]. To characterize

a sub-stochastic process, we define a measurable state space X ∪ ∂X . We consider a

2or one can transform eq. (1.1) into a Schrödinger equation by this transformation
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Markov process X = (Xt : t ≥ 0) on X ∪ ∂X and consider the family of distributions Px

for some initial condition x ∈X . The boundary ∂X is taken to be absorbing or

P·(xt>t0 ∈ ∂X |xt0 ∈ ∂X ) = 1.

All that this says is that we consider a random walk on a properly defined (discrete) state

space, where some boundary sites are capable of “killing” walkers, or forever trapping

them. In this context, our primary interest is in quasi-stationary distributions (QSDs). A

QSD is a distribution ν , such that

Pν(xt ∈ B|xt /∈ ∂X ) = ν(B)

for a subset B ∈X , or a distribution which is stationary when conditioned on remaining

alive. The quasi-stationary distribution, then, is the distribution which if achieved by a

walker, is only deviated from by the death of that walker. Hence, a walker with probability

distributed by the QSD retains probability distributed by the QSD until its death.

Our interest in these processes arises mostly due to their similarity to heat diffusion.

The QSD can be thought of as the ground state in heat diffusion. Even though such a state

may decay in amplitude with time, the relative amplitudes of that state remain constant. In

particular, for a finite, discrete state space, we encode a sub-stochastic process in a matrix

H satisfying

1. Hxy ≥ 0 ∀ x,y ∈X and

2. ∑y Hx,y ≤ 1 ∀ x ∈X .

Under these restrictions, we again wish to see how rapidly an arbitrary distribution f

approaches a quasi-stationary distribution. Similar to (but in reverse order from) eq. (1.1)

6



we write the eigenvalues of H as 1≥ λ0 > λ1 ≥ λ2 . . .≥ λN ≥ 0 and corresponding eigen-

vectors u0,u1, . . . ,uN . (The restriction to λ0 > λ1 corresponds to the restriction that our

walk is over a connected space. For details, see [25].) In this case, we define the spectral

gap γ = λ0−λ1. Then, we apply the walk t times

Htv = ∑
i

Ciuiλ
t
i

where we again assume that C0 6= 0. Now, exactly like Section 1.2,

∥∥∥∥ Htv
C0u0λ t

0
−1
∥∥∥∥=

∥∥∥∥∥∑i>0
fi

λ t
i

λ t
0

∥∥∥∥∥
where fi = (Ciui)/(C0u0). Note that the λi are arranged in decreasing order so that∥∥∥∥ Htv

C0u0λ t
0
− 1
∥∥∥∥ ≤ ∑

i>0
‖ fi‖

λ t
1

λ t
0

= C
λ t

1
λ t

0

= C
(λ0 − γ)t

λ t
0

= C
(

1− γ

λ0

)t

≤ C (1− γ)t

≤ Ce−γt

for some absolute constant C. Above, the second inequality follows from the fact that

λ0 ≤ 1 and t > 0. (The third inequality just follows from a standard exponential inequality,

(1−x)≤ e−x.) Hence, we see that a sub-stochastic process approaches its quasi-stationary

distribution with the same asymptotic bound in γ as a heat-diffusive process.
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1.4 The Rayleigh Quotient

Important to our discussion throughout the subsequent chapters will be the Rayleigh

quotient. In general, for a Hermitian operator H and some nonzero function u

∑
i

u∗i Hi ju j

u∗u
≡ 〈H〉u

is known as a Rayleigh quotient. The Rayleigh quotient, in quantum-mechanical terms, is

nothing more than the expected value of the operator H under the state u. In the present

case, it is simply the energy associated with the state u for the system given by H. If H has

eigenfunctions {ui}, then its eigenvalues are given by

λi = 〈H〉ui
.

It is easy to see, then, that the lowest eigenvalue λ0 is given by

λ0 = inf
u6=0
〈H〉u

since the Rayleigh quotient must always be greater than or equal to the lowest eigenvalue.

If H is nondegenerate, or has spectrum λ0 < λ1 < .. .λn, let Si be the space spanned by the

i lowest eigenvectors. Then,

λi = inf
u⊥Si
u6=0

〈H〉u. (1.4)

This particular form of the Rayleigh quotient will be the object we are most interested in

what follows. By utilizing a more careful definition of Si, we could accommodate degener-

ate spectra. Nonetheless, because we are never going to be interested in i > 1 and we will

always restrict ourselves to the case that λ1−λ0 > 0, we hereafter assume that all operators

8



discussed have nondegenerate spectra without loss of generality.

1.5 Minimal gap conservation

An interesting property that one can derive about interpolated Hamiltonians (such as

the standard adiabatic linear interpolation H(t) = (1− t)H0 + tH1) is that critical points

in the spectrum are conserved over the course of an interpolation. This is an immediate

consequence of the well-known Hellman-Feynman theorem, which will also be used in

later chapters.

Theorem 1.2. Let H(α) be a Hermitian operator (matrix) dependent upon a parameter α

with non-degenerate eigenvalue λ (α) and associated eigenfunction u(λ ;α). Then

dλ (α)

dα
= ∑

i, j
u∗i (λ ;α)

dH(α)i j

dα
u j(λ ;α)≡

〈
dH(α)

dα

〉
u(λ ;α)

where ui(λ ;α) is the ith component of u(λ ;α).

It should be noted that the theorem is typically stated for a Hermitian operator H(α)

with eigenvalues λ0 < λ1 < · · · < λN . Care must be taken in the application of this the-

orem when considering degenerate eigenvalues [59, 62] which can sometimes occur. For

instance, the ring graph with constant potential has degeneracies. Nonetheless, since the

cases we consider in this dissertation are non-degenerate, we can use this theorem in its

above-stated form.

The Hellman-Feynman theorem will be utilized in Chapter 4 for proving a one di-

mensional gap theorem. However, even in the context of adiabatic optimization, it has a

non-trivial, somewhat surprising consequence.

Theorem 1.3. Let H(s) = (1− a(s))H0 + a(s)H1 be a Hermitian operator with non-zero

spectral gap γ(s) and a monotone-increasing and once differentiable for s ∈ I. Suppose

9



that γ(s) has a stationary point s0 internal to I. Then, the two lowest eigenfunctions u,v of

H(s0) satisfy

γ(s0) = 〈H(s)〉v−〈H(s)〉u

for all s.

Proof. Let λ0(s)< λ1(s) be the two lowest eigenvalues of H(s) with corresponding eigen-

functions u(s) and v(s). With s0 as stated above, we know that γ(s0) = λ1(s0)− λ0(s0).

Furthermore, by Theorem 1.2, we have that

dγ

ds
=

〈
dH
ds

〉
v(s)
−
〈

dH
ds

〉
u(s)

= a′(s)
(
〈H1 − H0〉v(s) − 〈H1 − H0〉u(s)

)
.

We wish to evaluate the function at s = s0, which because a′(s)> 0 yields

0 = 〈H1 − H0〉v(s0)
− 〈H1 − H0〉u(s0)

.

Now, consider H(s),

〈H(s)〉v(s0)
= 〈H0〉v(s0)

+ a(s)〈(H1 − H0)〉v(s0)

= 〈H0〉v(s0)
+ a(s)〈(H1 − H0)〉u(s0)

= 〈H0〉v(s0)
− 〈H0〉u(s) + 〈H(s)〉u(s0)

.

Thus, we find that,

〈H(s)〉v(s0)
− 〈H(s)〉u(s0)

= 〈H0〉v(s0)
− 〈H0〉u(s0)

.

In other words, the quantity 〈H(s)〉v(s0)
−〈H(s)〉u(s0)

is independent of s. Because we

know that γ(s0) = 〈H(s0)〉v(s0)
−〈H(s0)〉u(s0)

and 〈H(s)〉v(s0)
−〈H(s)〉u(s0)

is independent

of s, our proof is complete.

We have incidentally also proven the following:

10



Corollary 1.1. Let H,v,u,γ be defined as in theorem 1.3. Then, if γ(s) attains its minimum

interior to I,

γmin = 〈H(s)〉v(s0)
−〈H(s)〉u(s0)

is independent of s.
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Chapter 2: Spectral Graph Theory

The most natural mathematical formalism for analyzing the spectral gap of the opera-

tors governing the processes discussed in the previous chapter is spectral graph theory. In

particular, we choose the formalism of combinatorial graph Laplacians, instead of normal-

ized graph Laplacians. 1 Typically, the framework of normalized graph Laplacians is the

more powerful approach, but in our context has great limitations. Most notably, the lowest

eigenvector (ground-state) of a combinatorial Laplacian is always the uniform distribution

and, for most of the processes that we wish to consider, is a (the) physically-relevant distri-

bution. In the case of normalized graph Laplacians, although regular graphs have a uniform

ground-state, in general, the ground state at vertex x is distributed like d−1/2
x where dx is

the degree of vertex x.

This adjusted ground-state, while mathematically advantageous, is difficult to under-

stand physically and not a useful starting point for the adiabatic algorithm. Furthermore,

there is presently no clear mapping between the spectrum of the normalized Laplacian and

the combinatorial Laplacian, other than in the case of regular graphs.2 This requires us to

focus our attention primarily on the combinatorial Laplacian. Although not our focus, when

not too distracting, we will occasionally explore properties of the normalized Laplacian.

1For a review of the distinction, see [25].
2Results in either setting apply equally well to both combinatorial and normalized Laplacians of k-regular

graphs, since the spectrum maps neatly from the combinatorial to normalized case by a multiplicative factor
of 1/k.
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2.1 Weighted Graph Laplacians

Our object of interest is the weighted, undirected “combinatorial” graph Laplacian asso-

ciated with a graph G = (V,E,w) with weight function w : V ×V →R+. We will somewhat

abusively refer to eigenvalues of the combinatorial Laplacian of a graph G as eigenvalues

of G and denote by λi the i-th eigenvalue of G. We choose w to satisfy the following three

constraints,

1. w(x,y) = 0 if (x,y) /∈ E,

2. w(x,y) = w(y,x) for all (x,y) ∈ E, and

3. w(x,x) = ∑{x,y}∈E w(x,y).

Although our analysis will apply equally well to disconnected graphs, we will always im-

pose the further constraint that our graph be connected, or that G cannot be decomposed

into union of two disjoint graphs.

The Laplacian then takes the form,

L(x,y) =


w(x,x) if x = y

−w(x,y) if x 6= y.
(2.1)

It is also useful to write the Laplacian as a linear operator on the space of functions { f :

V → R}. In keeping with spectral graph theory convention, we write L f (y) compactly for

[L f ](y). It should be clear from eq. (2.1) that

L f (y) = w(y,y) f (y)−∑
x∈V

w(y,x) f (x)

13



and utilizing the constraints on w,

L f (y) = ∑
{x,y}∈E

( f (y)− f (x))w(x,y). (2.2)

It is instructive to reconstruct the unweighted Laplacian for G from this definition.

Simply let w(x,y) = 1 for all (x,y) ∈ E. Then, w(x,x) = ∑y∼x 1 = dx. Thus, one finds that

L(x,y) =


dx if x = y

−1 if (x,y) ∈ E

0 otherwise.

Furthermore, the key property of a constant lowest eigenvector is preserved through this

definition. To see this, we begin by examining the Rayleigh quotient

λ0 = inf
f

∑
x,y

fx fyw(x,y)

∑
x

f 2
x

= inf
f

∑
x

f 2
x w(x,x) + ∑

x 6=y
fx fyw(x,y)

∑
x

f 2
x

= inf
f

∑
x

∑
y∼x

f 2
x w(x,y) + 2 ∑

{x,y}∈E
fx fyw(x,y)

∑
x

f 2
x

= inf
f

2 ∑
{x,y}∈E

f 2
x w(x,y) + 2 ∑

{x,y}∈E
fx fyw(x,y)

∑
x

f 2
x

= inf
f

∑
{x,y}∈E

( f 2
x + f 2

y )w(x,y) + 2 ∑
{x,y}∈E

fx fyw(x,y)

∑
x

f 2
x

14



= inf
f

∑
{x,y}∈E

( f 2
x + f 2

y − 2 fx fy)w(x,y)

∑
x

f 2
x

= inf
f

∑
{x,y}∈E

( fx − fy)
2w(x,y)

∑
x

f 2
x

.

Above, the third equality follows from the first and third constraints on w and the fifth

equality from the second constraint on w. Now, note that w(x,y)( fx− fy)
2 ≥ 0 indepen-

dently of the choice of x,y. This clearly implies that λ0 ≥ 0. By choosing fx = fy =C for

all x∈V , we see that λ0 = 0 is achieved, and hence fx = fy =C is an eigenvector associated

with eigenvalue 0.

It is easy to see that we can achieve 0 in the numerator if and only if fx − fy = 0

whenever w(x,y) 6= 0. If the graph were disconnected, we could indeed choose fx = fy =C1

for all x,y in one connected component and f ′x = f ′y =C2 in the other connected component

and still achieve λ0 = 0. This, however, clearly requires C1 =C2 in the case of a connected

graph. Hence, in the case of a connected graph, the ground-state is unique.

The first nontrivial eigenvalue of G is clearly given by the Rayleigh quotient,

λ1 = inf
f⊥1

∑
(x,y)∈E

( fx− fy)
2w(x,y)

∑
x

f 2
x

and furthermore,

λi = inf
f⊥Si

∑
(x,y)∈E

( fx− fy)
2w(x,y)

∑
x

f 2
x

(2.3)

where Si is the subspace spanned by the i lowest eigenvectors. The spectral gap γ of a graph

G is then,

γ := λ1−λ0 = λ1.
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2.2 Dirichlet Eigenvalues

To fully utilize the graph formalism, we consider a subgraph S of a graph G. Let

V (S) ⊆ V be the vertices of S and E(S) ⊆ E be the edges of S. We write ∂S = {(x,y) ∈

E | x ∈ V (S),y /∈ V (S)} and δS = {x ∈ V \V (S) | (x,y) ∈ ∂S for some y ∈ V}. In other

words, ∂S is the set of all edges of G with only one end in S. Then, δS is the set of all

vertices in G\S that are connected by an edge to some vertex in S.

Now, consider functions f : S∪δS→ R+. We write

λ
(D)
i = inf

f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)∪∂S

( fx− fy)
2w(x,y)

∑
x

f 2
x

(2.4)

where D∗ is the space of functions { f : S∪δS→ R+} satisfying the Dirichlet condition

f (x ∈ δS) = 0.

Note that, through an appropriate choice of w, one can specify the eigenvalues of all

stoquastic Hamiltonians. To see this, fix a Hamiltonian

H = L+W (2.5)

where L is a combinatorial graph Laplacian and W is some diagonal matrix which can be

identified with a physical potential. Because shifts H 7→ H + cI adjust the spectrum by

uniformly adding the constant c, we can restrict to the case that W ≥ 0 without loss of

generality. Then, W is a linear operator satisfying W : S→ R+.

We choose a host graph G for S such that

1. S is the graph corresponding to L, and
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2. W (x) = ∑y∈δS w(x,y).

Then, eq. (2.4) becomes

λ
(D)
i = inf

f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)∪∂S

( fx − fy)
2w(x,y)

∑
x∈V (S)

f 2
x

= inf
f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)

( fx − fy)
2w(x,y) + ∑

(x,y)∈∂S
( fx − fy)

2w(x,y)

∑
x∈V (S)

f 2
x

= inf
f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)

( fx − fy)
2w(x,y) + ∑

x∈V (S)
∑

y∈δS
( fx − fy)

2w(x,y)

∑
x∈V (S)

f 2
x

= inf
f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)

( fx − fy)
2w(x,y) + ∑

x∈V (S)
∑

y∈δS
f 2
x w(x,y)

∑
x∈V (S)

f 2
x

= inf
f∈D∗
f⊥S∗i

∑
{x,y}∈E(S)

( fx − fy)
2w(x,y) + ∑

x∈V (S)
f 2
x W (x)

∑
x∈V (S)

f 2
x

which are clearly the eigenvalues of H. Note that, above, the fourth step follows by explic-

itly imposing the Dirichlet condition.

One can also derive an operator equation for H. Like above, both L and W can be

viewed as linear operators on { f : S∪ δS→ R| f (x ∈ δS) = 0}, where the action of L is

given by eq. (2.2) and the action of W is simply

W f (y) = w(y,y) f (y) = ∑
x∈δS

w(y,x) f (y).
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Combining these facts,

H f (y) = ∑
x∈V (S)∪δS

( f (y)− f (x))w(y,x). (2.6)

2.2.1 Dirichlet gap

Because the Dirichlet eigenvalues are the eigenvalues that we are typically interested

in, we look to also define a spectral gap. The obvious choice is

γ
(D) := λ

(D)
1 −λ

(D)
0 . (2.7)

Since λ
(D)
0 > 0 whenever the Dirichlet boundary is nonempty (see spectral interlacing),

the spectral gap of the Dirichlet eigenvalues is more difficult to analyze than that of the host

graph. Our goal in this section is to seek a functional definition for the spectral gap, like

that of eq. (2.3). We derive a theorem similar to Proposition 1.1 of [26].

Theorem 2.1. Suppose u is the first Dirichlet eigenfunction corresponding to eigenvalue

λ
(D)
0 of the induced subgraph S of G. Let λ

(D)
1 > λ

(D)
0 be the next-lowest non-trivial Dirich-

let eigenvalue. Then, the spectral gap γ(D) = λ
(D)
1 −λ

(D)
0 is given by

γ
(D) = inf

f⊥1

∑
{x,y}∈E(S)

( fx− fy)
2w(x,y)uxuy

∑
x∈V (S)

f 2
x u2

x
.

Proof. We begin by noting that u is an eigenfunction of the appropriate operator H. Then,

eq. (2.6) yields
λ
(D)
0 uy = Huy

= ∑
x∈V (S)∪δS

(uy − ux)w(y,x)
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Thus, for an arbitrary function f : S∪δS→ R,

λ
(D)
0 u2

y f 2
y = ∑

x∈V (S)∪δS
(uy − ux)wyx f 2

y uy

λ
(D)
0 ∑

y
u2

y f 2
y = ∑

y∈V (S)
∑

x∈V (S)∪δS
wyx(uy − ux) f 2

y uy

= ∑
{x,y}∈∂S

wyx(uy − ux)( f 2
y uy − f 2

x ux)

= ∑
{x,y}∈∂S

wyx
(
( fyuy − fxux)

2 − ( f 2
y uxuy + f 2

x uxuy − 2 fx fyuxuy)
)

= ∑
{x,y}∈∂S

wyx

(
( fyuy − fxux)

2 − ( fy − fx)
2 uxuy

)
.

Thus,

(2.8)

∑
{x,y} ∈∂S

w(y,x)( fyuy − fxux)
2

∑
y

u2
y f 2

y
=

∑
{x,y}∈∂S

( fy − fx)
2 uxuyw(x,y)

∑
y

u2
y f 2

y
+ λ

(D)
0 .

Now, examining eq. (2.4),

λ
(D)
1 = inf

g∈D∗
g⊥u

∑
{x,y}∈E(S)∪∂S

(gx − gy)
2w(x,y)

∑
x

g2
x

we choose g = f u and see that

λ
(D)
1 = inf

f∈D∗
f⊥u2

∑
{x,y}∈E(S)∪∂S

( fxux − fyuy)
2w(x,y)

∑
x

f 2
x

.

= inf
f∈D∗
f⊥u2

∑
{x,y}∈∂S

w(y,x)( fyuy − fxux)
2

∑
y

u2
y f 2

y

= inf
f∈D∗
f⊥u2

∑
{x,y}∈∂S

( fy − fx)
2 w(x,y)uxuy

∑
y

u2
y f 2

y
+ λ

(D)
0 .
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Thus, we finally arrive at

γ
(D) = inf

f∈D∗
f⊥u2

∑
{x,y}∈∂S

( fy − fx)
2 w(x,y)uxuy

∑
y

u2
y f 2

y
.

2.3 Cheeger Inequalities

Isoperimetric inequalities bound the volume of a region of a graph by the surface area

of that region. Roughly speaking, the ratio of surface area to volume is bounded by a

constant, known as an isoperimetric constant. The simplest and perhaps most commonly

used isoperimetric inequality is known as a Cheeger inequality, which relates this ratio to

an isoperimetric constant known as the Cheeger constant. In the context of Markov chains,

this constant is often referred to as the conductance.

The utility of Cheeger inequalities is most easily seen by first deriving the Cheeger

upper bound. Our approach follows [25]. First, we define the Cheeger constant for a subset

A of V (S). Let A =V (S)\A. Then, define

hS(A) =
∑x∈A

y∈A
w(x,y)uxuy

min(vol(A),vol(A))

where vol(A) = ∑x∈A u2
x .

Now, we wish to minimize different “cuts”. We hence arrive at the Cheeger constant of

the subgraph S

hS = min
A

hS(A). (2.9)

This constant provides a simple upper bound to the spectral gap γ(D).
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Theorem 2.2.

γ
(D) ≤ 2hS

Proof. Consider the A that actually achieves this minimum. We wish to maximize contri-

butions from the cut itself, while minimizing contributions from either side internal to the

cut. To do so, we choose a step function, orthogonal to u2, that changes sign at the cut

itself. (The sign change at the cut insures that ( fx− fy)
2 ≥ f 2

x + f 2
y .)

f (y) =


1

vol(A) y ∈ A

− 1
vol(A) y ∈ A

Now, by Theorem 2.1,

γ
(D) ≤

∑
{x,y}∈E(S)

( fx − fy)
2w(x,y)uxuy

∑
x∈V (S)

f 2
x u2

x
.

=

∑
x∈A
y∈A

(
1

vol(A)
+

1
vol(A)

)2w(x,y)uxuy

1
vol(A)

+
1

vol(A)

.

= ∑
x∈A
y∈A

(
1

vol(A)
+

1
vol(A)

)w(x,y)uxuy

≤ 2
min(vol(A),vol(A)) ∑

x∈A
y∈A

w(x,y)uxuy.

= 2hS

We now wish to derive a Cheeger lower bound. Before we start, it helps to derive a

relationship similar to eq. (2.6), except for γ(D).
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Lemma 2.1. Suppose v and u be the Dirichlet eigenfunctions corresponding to eigenvalues

λ
(D)
1 and λ

(D)
0 . Let f = v/u and γ(D) = λ

(D)
1 −λ

(D)
0 . Then,

γ
(D) fyu2

y = ∑
x∈V (S)∪δS

w(y,x)( fy− fx)uxuy.

Proof. Let v and u represent the Dirichlet eigenfunctions corresponding to eigenvalues λ
(D)
1

and λ
(D)
0 respectively. Then, by eq. (2.6)

λ
(D)
1 vy = ∑

x∈V (S)∪δS
(vy − vx)w(y,x)

λ
(D)
1 vyuy = ∑

x∈V (S)∪δS
(vy − vx)uyw(y,x).

Similarly,
λ
(D)
0 vyuy = ∑

x∈V (S)∪δS
(uy − ux)vyw(y,x).

Combining these,

γ
(D)vyuy = ∑

x∈V (S)∪δS
(vy − vx)uyw(y,x)− ∑

x∈V (S)∪δS
(uy − ux)vyw(y,x)

= ∑
x∈V (S)∪δS

w(y,x)((vy − vx)uy − (uy − ux)vy)

= ∑
x∈V (S)∪δS

w(y,x)(uxvy − vxuy) .

Now, substituting f = v/u

γ
(D) fyu2

y = ∑
x∈V (S)∪δS

w(y,x)(uxuy fy − fxuxuy) .

= ∑
x∈V (S)∪δS

w(y,x)( fy − fx)uxuy.

Remark. Note that one can also derive the above expression through variational consid-

erations of the Theorem 2.1. This approach is used by Chung in [25]. Alternatively, one
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might also derive this expression by considering rates of heat diffusion. This method will

be explored in Chapter 5.

Theorem 2.3. Let λ
(D)
0 < λ

(D)
1 be the two lowest Dirichlet eigenvalues of S∪ δS with

corresponding eigenvectors u,v. Then,

γ
(D) ≥ h2

S
2(〈D〉v−2λ0)

where 〈D〉v = ∑x∈S dvxv
2
x .

Proof. Let S+ = {x ∈ V (S)|v ≥ 0}. Assume that the host graph S∪ δS has corresponding

Laplacian L = D−A, where Dx = ∑y∼x w(y,x)x and Ax = ∑y∼x w(y,x)y. Without loss of

generality, we assume that 〈D〉v|S+ ≤ 〈D〉v.. (Note that if this were not true, we could simply

take v 7→ −v. We begin by recalling Lemma 2.1,

γ
(D) fyu2

y = ∑
x∈V (S)∪δS

w(y,x)( fy − fx)uxuy

γ
(D)

∑
fy >0

f 2
y u2

y = ∑
fy>0

∑
x∈V (S)∪δS

w(y,x)( fy − fx) fyuxuy

Now, we introduce the function

g(y) =


f (y) if f (y)> 0

0 otherwise.

Hence, we arrive at,

γ
(D)

∑
y

g2
yu2

y ≥∑
y

∑
x∈V (S)∪δS

w(y,x)(gy − gx)gyuxuy.

We then rearrange this expression to obtain an inequality explicitly for the gap.

γ
(D) ≥

∑
y

∑
x∈V (S)∪δS

w(y,x)(gy − gx)gyuxuy

∑
y

g2
yu2

y
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≥
∑

{y,x}∈E(S)
w(y,x)(gy − gx)

2 uxuy

∑
y

g2
yu2

y

= Φ

Now,

Φ =

∑
{y,x}∈E(S)

w(y,x)(gy − gx)
2 uxuy

∑
y

g2
yu2

y
·

∑
{y,x}∈E(S)

(gy + gx)
2 uxuyw(y,x)

∑
{y,x}∈E(S)

(gy + gx)
2uyuxw(y,x)

≥

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

∑
y

g2
yu2

y

(
∑

{y,x}∈E(S)
(gy + gx)

2uyuxw(y,x)

)

=

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

∑
y

g2
yu2

y

(
∑

{y,x}∈E(S)

(
2g2

y + 2g2
x − (gy − gx)

2)uyuxw(y,x)

)

=

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

∑
y

g2
yu2

y

(
2∑

y
g2

yuy ∑
x

uxw(y,x)− ∑
{y,x}∈E(S)

(
(gy − gx)

2)uyuxw(y,x)

)

where the inequality follows directly from Cauchy-Schwarz. Next, for the denominator,

we recall eq. (2.6), (
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

∑
y

g2
yu2

y

(
2∑

y
g2

yuy

(
∑
x

w(y,x)− λ
(D)
0

)
uy − ∑

{y,x}∈E(S)

(
(gy − gx)

2)uyuxw(y,x)

)
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=

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

∑
y

g2
yu2

y

(
2∑

y
g2

yu2
y

(
∑
x

w(y,x)− λ
(D)
0

)
− ∑
{y,x}∈E(S)

(gy − gx)
2uyuxw(y,x)

)

=

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

(
∑
y

g2
yu2

y

)2(
2

∑y g2
yu2

y ∑x w(y,x)

∑y g2
yu2

y
− 2λ

(D)
0 −Φ

)

=

(
∑

{y,x}∈E(S)
|g2

y − g2
x |uxuyw(y,x)

)2

(
∑
y

g2
yu2

y

)2(
2

∑y g2
yu2

ydy

∑y g2
yu2

y
− 2λ

(D)
0 −Φ

) .

In order to derive a bound, we now sort the components of v supported by S+. In

particular, we order the components such that 0 < vxi ≤ vxi+1 for all xi,xi+1 ∈ S+. We

construct cuts Ci such that,

Ci = {{x j,xk} ∈ E(S)| j ≤ i < k}

or, in other words, we cut vertices that connect amplitudes of v less than or equal to vi to

amplitudes of v greater than vi. Then, by noting that our ordering guarantees |g2
x − g2

y | ≥

|g2
xi
−g2

xi+1
and considering our choice of cut for i, we have that

Φ ≥

(
∑

i
|g2

vi
− g2

vi+1
|∑

Ci

uxuyw(y,x)

)2

(
∑
y

g2
yu2

y

)2(
2

∑y g2
yu2

ydy

∑y g2
yu2

y
− 2λ

(D)
0 −Φ

)
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≥

(
∑

i
|g2

vi
− g2

vi+1
|∑

j≤i
hSu2

i

)2

(
∑
y

g2
yu2

y

)2(
2

∑y g2
yu2

ydy

∑y g2
yu2

y
− 2λ

(D)
0 −Φ

)

≥ h2
S

2〈D〉v − 2λ0 −Φ

≥ h2
S

2〈D〉v − 2λ0

where the second inequality followed from our assumption that 〈D〉v|S+ 〉 ≤ 〈D〉v〉.

At this point, one might wish to note that in the context of adiabatic optimization, one

can combine Theorem 2.3 with Theorem 1.3 to derive a bound explicitly in terms of the

ground-state and applied directly to the gap minimum. Considerations of this sort will be

considered in the next chapter.
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Chapter 3: Adiabatic optimization without local minima

3.1 Introduction

An original intuition of adiabatic quantum computation (and an earlier classical algo-

rithm called quantum annealing [36]) is that quantum optimization algorithms can in some

cases tunnel out of local minima that would trap a classical algorithm known as simulated

annealing. The runtime of adiabatic algorithms for variousspecific potentials with local

minima has been analyzed in [6, 7, 33, 54, 57, 58]. In this chapter we investigate the more

basic question of whether quantum adiabatic algorithms always efficiently solve “trivial”

optimization problems, or problems where the only local energy minimum is the global

minimum. As one might intuit from Theorem 2.3, we can construct a Hamiltonian with an

exponentially small “bottleneck” in the distribution, thus causing an exponentially small

gap.

Specifically, we consider Hamiltonians associated with graphs, consisting of the graph

Laplacian plus a potential on the vertices. (The dimension of the Hilbert space is the

number of vertices in the graph. The vertices may be labeled with bit strings corresponding

to basis states of a set of qubits. Physically, one can interpret the Hamiltonian as describing

a single particle hopping amongst the vertices.) In Section 3.3 we construct a single-basin

potential on a graph such that the eigenvalue gap between the ground state and first excited

state is exponentially small as a function of the number of vertices. This corresponds to a

trivial optimization problem for which classical gradient descent finds the minimal-energy
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vertex in linear time.

Strictly speaking, the exponentially small eigenvalue gap in our example does not nec-

essarily imply that an adiabatic algorithm fails to solve this problem. For this one would

need to invoke a converse of the adiabatic theorem, and one would furthermore need to

show that diabatic transitions between eigenstates cause algorithmic failure in a practical

sense. (Indeed, an example of algorithmic success despite failure of adiabaticity is given in

[50].) However, our construction serves as a counterexample to a natural and perhaps even

widely assumed conjecture, namely that potentials without local minima yield polynomial

eigenvalue gaps.

Our counterexample has a ground state consisting of two “lobes” with exponentially

small amplitude in the region between them. In Section 3.4 we use arguments based on

conductance of Markov chains to show that the eigenvalue gap shrinks at worst quadrati-

cally with the number of vertices provided the ground state wavefunction is single-peaked.

(See Lemma 3.4.) Thus, the two-lobed nature of the ground state in our counterexample is

an essential feature. In other words, we find that the structure of local extrema in the poten-

tial does not neatly characterize the eigenvalue gap, but the structure of the local extrema

of the ground state wavefunction does.

We also specifically investigate the one-dimensional case, called the path graph. We

show that for convex1 potentials, the ground state wavefunction is single-peaked. This

yields, as a consequence of proposition 3.4, an Ω(1/(|W |`2)) lower bound on the gap for

the path of ` vertices and a potential of norm |W |. By adapting Poincaré’s inequality we

are able to obtain an Ω(1/`2) lower bound, with no dependence on |W |. This lower bound

is tight to within a constant factor [41], and forms a discrete analog of [52]. Previous

work has shown that for symmetric potentials on the path graph that increase as one moves

1Actually, our result holds under the slightly weaker condition that the potential be “single-basin”. See
§3.4.3.
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away from the center, the eigenvalue gap is lower bounded by Ω(1/`2) [15]. Our result

is incomparable to that of [15] in that such potentials are not a special case of convex

potentials nor vice-versa.

Much of the research on adiabatic quantum algorithms seeks to achieve exponential

speedups over classical algorithms. For this purpose, one seeks to find a potential on a

highly-connected graph of exponentially many vertices (often the hypercube) such that

the eigenvalue gap is only polynomially small. This differs somewhat from the setting

studied in the present chapter - we consider graphs of polynomially many vertices and ask

whether the gap is exponentially small or polynomially small. Thus, our counterexample

in which the gap is already exponentially small on a graph of only polynomially many

vertices constitutes an even more extreme gap collapse than previous examples such as [5].

In this chapter, since the math is somewhat less technical, we adopt standard Dirac

notation. Most of the content of this section can also be found in [42].

3.2 Preliminaries

Let G be a graph with vertices VG and edges EG⊆VG×VG. Let HG = span{〉x||x∈VG}

be a complex Hilbert space with 〈x|y〉 = δx,y. Let LG denote the Laplacian of G acting on

H . That is,

LG = ∑
x∈VG

dx〉x|〈x|− ∑
(x,y)∈EG

〉x|〈y|, (3.1)

where dx denotes the degree of vertex x.

In this chapter, we consider the Dirichlet graph described by

HG,W = LG + ∑
x∈VG

W (x)〉x|〈x|, (3.2)

where W : VG→ R can be thought of as a potential energy function.
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We say that x ∈VG is a local minimum of W if W (x)≤W (y) for all y such that (x,y) ∈

EG. By the Perron-Frobenius theorem, the ground state of HG,W can be expressed in the

form

〉ψ|= ∑
x∈VG

ψ(x)〉x| (3.3)

with ψ(x)> 0 for all x ∈VG. We say that ψ has a local maximum at x if

ψ(x)≥ ψ(y) ∀y s.t. (x,y) ∈ EG. (3.4)

In Section 3.4.2 we prove a lower bound on the eigenvalue gap in the case that the

ground state wavefunction is single-peaked. By this, we mean that the set of local maxima

of ψ form a connected set of vertices in G. This is a weaker condition than demanding

that ψ have only a single local maximum, in that we allow the peak to consist of multiple

vertices on which ψ is constant.

Most adiabatic optimization algorithms proposed to date use the following formulation.

The optimization problem is formalized as a search on a graph G. The edges of the graph

EG represent the allowed moves within the search space. The vertices VG represent the

possible solutions, and one seeks to minimize the cost function W : VG→R. For simplicity

we assume that W has a unique global minimum xmin ∈VG. Let

HG,W (s) = (1− s)LG + s ∑
x∈VG

W (x)〉x|〈x|. (3.5)

The computation starts in the uniform superposition over vertices of G, which is the ground

state of HG,W (0). Then, one applies a slowly-varying Hamiltonian HG,W (t/τ). According

to the adiabatic theorem, if τ is taken sufficiently large, the system will track the instanta-

neous ground state, and at the end of the computation, one will be left with the ground state

of H(1), namely 〉xmin|. More quantitatively, the adiabatic theorem [40] shows that it suf-

30



fices to take τ = O(1/γ3), where γ = min0≤s≤1 γ(s) and γ(s) is the eigenvalue gap between

the ground energy and first excited energy of HG,W (s). (Heuristic arguments suggest that

in many cases τ = O(1/γ2) suffices [48]. For careful choices of s(t), which do not include

the choice s = t/τ considered here, this has been shown to hold rigorously [31]. See §3.6

for more discussion of this point.)

Let

ĤG,W (s) =
HG,W (s)

1− s
. (3.6)

One sees that ĤG,W (s) is of the form (3.2) for all s ∈ [0,1). Furthermore, the eigenvalue

gap γ(s) is given by

γ(s) = (1− s)γ̂(s), (3.7)

where γ̂(s) is the eigenvalue gap of ĤG,W (s). Thus, theorems yielding upper or lower

bounds on the eigenvalue gap of Hamiltonians of the form (3.2) yield useful bounds on

the eigenvalue gap of HG,W (s) throughout the adiabatic algorithm except when s is very

close to one. The gap analysis for s very close to one can be performed by other means, as

discussed in §3.6. Throughout the rest of this paper, our focus will be on bounding gaps for

Hamiltonians of the form (3.2).

Some works, such as [28, 32, 34], have considered adiabatic optimization algorithms

with paths other than the linear interpolation defined by (3.5). In certain cases this has been

shown to improve runtime. Most of the proposed alternative paths involve non-uniform

changes to the off-diagonal matrix elements. Unlike (3.5), such Hamiltonians cannot be

put into the form (3.2) by rescaling. Instead, they correspond to (3.2) where the Laplacian

is of a weighted graph. The analysis of such Hamiltonians thus goes beyond the scope of

this paper, although techniques related to those described here may be applicable.
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3.3 Small Gaps Without Local Minima

Given a connected graph G, a potential W on the vertices, and a Hamiltonian HG,W

of the form given in (3.2), one is tempted to conjecture that if G has only polynomially

many vertices and W has no local minima (other than a global minimum) then HG,W can’t

have an exponentially small gap. In this section we construct a counterexample to this

conjecture. In fact, beyond lack of local minima, our counterexample satisfies the even

stronger condition that the potential forms a monotonic basin leading to a unique vertex of

minimal potential. That is, there is no connected region of constant potential.

Consider the following “caterpillar” graph of 6`−1 vertices, as illustrated below.

Bℓ

Cℓ

Cℓ

B0

C1

C1

C1

C1

C2

C2

C2

C2

B2 B2 B0B1 B1
... ...

We consider a potential on the vertices with left-right and top-bottom mirror symmetries,

and we correspondingly label equivalent vertices with identical labels. Our potential is as

follows2.
W (B0) = 0

W (B j) = −1
2 −

j
4l j ∈ {1, . . . , `}

W (C1) = 1
11
12−

1
8`
−1

W (C`) = 7

W (C j) = 1
2
3−

j
8`
−1 j ∈ {2, . . . , `−1}

(3.8)

2Curious readers may wonder how this potential was arrived at. One can choose a desired ground state and
potential on the B vertices, set the ground energy to zero, and solve for the wavefunction and potential on the
C vertices. With some trial and error one can find choices such that the wavefunction at B` is exponentially
small, yet the potential on each C vertex is greater than the potential on the B vertex to which it is connected
and the ground state amplitudes are nonnegative on all vertices.
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One sees that this potential is a single basin funneling to the unique minimum-potential

vertex B`. (See Fig. 3.1.) The following unnormalized eigenstate has eigenvalue zero.

ψ(B0) = 2
3

ψ(B j) =
(2

3

) j
j ∈ {1, . . . , `}

ψ(C`) = 1
8

(2
3

)`
ψ(C1) = 2

3

(11
12 −

1
8`

)
ψ(C j) =

(
2
3 −

j
8`

)(2
3

) j
j ∈ {2, . . . , `−1}

(3.9)

All off-diagonal elements of the Hamiltonian HG,W are nonpositive. Therefore, by the

Perron-Frobenius theorem, its ground state is the only eigenstate with all nonnegative am-

plitudes [45]. Hence, we can identify ψ as the ground state of HG,W .

A ground state consisting of two symmetric lobes, such as ψ , implies a small eigenvalue

gap because, by flipping the signs of the amplitudes in one lobe, one obtains an orthogonal

state of only slightly higher energy. This energy cost, which upper-bounds the eigenvalue

gap, is small due to the smallness of the amplitudes between the lobes.

More precisely, consider the wavefunction φ , which equals ψ for all vertices to the left

of B`, equals −ψ for all vertices to the right of B`, and equals zero at B` and C`. One

sees that φ is orthogonal to ψ . Let η = 〈φ |φ〉 and let 〉φ̃ | = 1√
η
〉φ | be the normalized

version of 〉φ |. The first excited state is variationally characterized as the lowest energy

state orthogonal to the ground state. Therefore the energy of the first excited state is at

most 〈φ̃ |HG,W 〉φ̃ |. Because the ground energy is zero we thus have

γ ≤ 〈φ̃ |HG,W 〉φ̃ |. (3.10)

By construction, 〉φ | satisfies the eigenvalue zero equation everywhere except at the B`
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Ground State

Potential

Figure 3.1: We illustrate the ground state wavefunction ψ and the potential W for `= 4. The ground
state ψ consists of two lobes separated by a region of small amplitude in the center. The potential
along the “spine” of the caterpillar is negative and decreasing as one approaches the central vertex
B4. The potential is positive on the “legs” of the caterpillar. Thus, the classical steepest-descent
algorithm starting from any initial vertex will reach the minimum (B4) by the shortest path. Note
that the potential on the C4 vertices is approximately ten times as large as the second largest value
of the potential, and thus it is cut off by the boundaries of the figure.
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vertex and the two B`−1 vertices. Using this fact, one finds

〈φ |HG,W 〉φ |= 2ψ(B`)ψ(B`−1). (3.11)

By (3.9) one sees that η > 1. Therefore, (3.10) yields

γ ≤ 2η
−1

ψ(B`)ψ(B`−1) (3.12)

< 2ψ(B`)ψ(B`−1) (3.13)

= 2
(

2
3

)2`−1

. (3.14)

Hence, without any local minima in the potential and with only O(`) vertices we obtain an

eigenvalue gap of O((2/3)2`).

3.4 Conductance-based Gap Bounds

In the preceding section, we showed that a ground state consisting of two symmetric

lobes separated by a region of small amplitude implies a small eigenvalue gap. We relied on

the symmetry of the lobes to construct a low-energy state orthogonal to the ground state by

flipping the sign of the amplitudes on one lobe. However, it is true more generally that lobes

separated by a region of small amplitude imply a small gap even if the lobes are asymmetric,

provided the imbalance is not too severe. In this section we use concept of conductance to

make this precise, and conversely to prove that if the ground state wavefunction is single-

peaked, then the eigenvalue gap cannot be smaller than Ω(|VG|−2).
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3.4.1 Conductance

Motivated by applications to rapidly mixing Markov chains, sophisticated tools have

been developed to bound the difference between the largest and second-largest eigenvalues

of stochastic matrices. In this subsection, we recount one such tool, known as conductance.

Consider a discrete-time random walk on G defined by transition matrix P. That is,

for x,y ∈ VG, Pxy is the probability for a walker at x to transition to y in a given timestep.

Thus, P is a row-stochastic matrix. Conductance provides upper and lower bounds on the

gap between the largest and second largest eigenvalues of row-stochastic matrices in the

case that the random walks they define are ergodic and reversible. Ergodicity means that

the random walk converges to the same limiting distribution independent of the starting

point of the walker. Reversibility means that, in the limiting distribution, the probability

of traversing a given edge in one direction is equal to the probability of traversing it in

the opposite direction. More formally, we recount the following definitions and facts from

[56].

Definition 3.1. The random walk defined by transition matrix P on vertex set VG is ergodic

if

lim
s→∞

(Ps)xy = πy independent of x. (3.15)

The probability distribution π is then called the limiting distribution of the random walk.

Lemma 3.1. The following conditions are necessary and sufficient for ergodicity of P.

1. P is irreducible. That is, for each x,y ∈VG there is s ∈ N such that (Ps)xy > 0.

2. P is aperiodic. That is, for all x,y, gcd{s|(Ps)xy > 0}= 1.

Definition 3.2. An ergodic random walk given by transition matrix P on vertex set VG is
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reversible if

πxPxy = πyPyx ∀x,y ∈VG, (3.16)

where π is the limiting distribution.

Definition 3.3. Let P be the transition matrix of a reversible ergodic random walk on graph

G with vertices VG and edges EG. Let π be the corresponding limiting distribution. Let S

be any non-empty subset of VG and let S̄ =VG/S be its complement. Let

FS = ∑
(x,y)∈EG

x∈S,y∈S̄

πxPxy (3.17)

CS = ∑
x∈S

πx (3.18)

ΦS(P) =
FS

min{CS,CS̄}
(3.19)

Φ(P) = min
S⊂VG

ΦS(P). (3.20)

Φ(P) is called the conductance of P.

The quantity FS is called the flow of S, and the quantity PS is called the probability

of S. Note that, for reversible random walks, FS = FS̄. By the Perron-Frobenius theo-

rem, the largest eigenvalue of any irreducible stochastic matrix is 1 and the corresponding

eigenspace is one-dimensional. Furthermore, this eigenvector can be written with all non-

negative entries. Adapting theorems 2.4 and 2.6 of [56] one has the following.

Lemma 3.2. (from [56]) Let matrix P define a reversible ergodic random walk with con-

ductance Φ(P). Let γ denote the gap between the largest eigenvalue of P (which is 1) and

the second-largest eigenvalue. Then

Φ(P)2

2
≤ γ ≤ 2Φ(P). (3.21)
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Proposition 3.2 is based on Cheeger’s inequality [22] for the spectrum of Laplacians

of manifolds, which was adapted to graphs by Alon and Milman [4], and extended to

stochastic matrices by Sinclair [56].

3.4.2 Conductance Bound

In this subsection we use conductance to prove lower bounds on the gap of Hamilto-

nians of the form HG,W given in (3.2), culminating in a proof that the “lobed” nature of

the ground state wavefunction in the counterexample from §3.3 is a necessary feature to

obtain exponentially small gap. Specifically, we show that if HG,W has a single-peaked

ground state then its eigenvalue gap has an Ω(|W |−1|VG|−2) lower bound, where |VG| is the

number of vertices in the graph G and |W |= maxx∈VG W (x)−minx∈VG W (x).

Given a connected graph G, and a potential W on the vertices, let HG,W be the corre-

sponding Hamiltonian of the form (3.2). Let γ denote the energy gap between the ground

state and first excited state of HG,W . For the purpose of bounding γ we may assume without

loss of generality that the potential satisfies W (x)<−dG ∀x ∈VG, where dG is the maxi-

mum degree of any vertex in G. If this is not the case, one can always subtract a sufficiently

large multiple of the identity matrix to make it so without affecting γ .

Let 〉ψ|= ∑x∈VG
ψ(x)〉x| denote the ground state of HG,W and E the ground energy. Let

Nx be the neighbors of vertex x. That is,

Nx = {y ∈VG|(x,y) ∈ EG}. (3.22)

In this notation,

(dx +W (x))ψ(x)− ∑
y∈Nx

ψ(y) = Eψ(x). (3.23)
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For connected G,

ψ(x)> 0 ∀x. (3.24)

Thus we may rearrange (3.23) to obtain

dx +W (x)− ∑
y∈Nx

ψ(y)/ψ(x) = E. (3.25)

Also, note that H has all nonpositive entries, so E < 0.

We next adapt a technique from [2, 3, 21] to relate the spectrum of HG,W to the spectrum

of a random walk. Let D = diag{ψ(x)|x ∈ VG}. By (3.24), D is an invertible matrix with

D−1 = diag{ψ(x)−1|x ∈VG}. Let

P =
1
E

D−1HG,W D. (3.26)

By (3.25), ∑y∈VG
〈x|P〉y|= 1. That is, P is a row-stochastic matrix.

Because E < 0, the lowest eigenvalue of H corresponds to the highest eigenvalue of P,

which is 1. Specifically, let

〉ψ2|= ∑
x∈VG

ψ(x)2〉x|. (3.27)

One sees that

〈ψ2|P = 〈ψ2|. (3.28)

Hence the probability distribution ψ2 is a limiting distribution of the random walk defined

by P. Connectedness of the graph G suffices to ensure that condition 1 of proposition 3.1

is satisfied. The requirement that W (x) < −dG for all x ∈ VG ensures that condition 2 of

proposition 3.1 is satisfied [56]. Thus, P is an ergodic random walk. In other words, ψ2 is

the unique limiting distribution of P and correspondingly 〉ψ| is the nondegenerate ground
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state of HG,W . By direct calculation, one finds

ψ(x)2Pxy = ψ(y)2Pyx =

 −
1
E ψ(x)ψ(y) if (x,y) ∈ Eg

0 otherwise.
(3.29)

Thus, P is a reversible ergodic random walk. Therefore, by proposition 3.2 and equation

(3.26), the energy gap γ between the ground and first-excited states of HG,W satisfies

−E
2

Φ
2(P)≤ γ ≤−2EΦ(P). (3.30)

One sees that the flow between S⊂VG and its complement determined by P is

FS(P) = ∑
x∈S
y∈S̄

ψ(x)ψ(y)
−E

(3.31)

and the corresponding probability is

CS(P) = ∑
x∈S

ψ(x)2. (3.32)

Thus, by (3.30) one obtains the following result.

Lemma 3.3. (cf. [2, 3, 21]) Let HG,W be a Hamiltonian of the form (3.2) with W (x) ≤

−dG ∀x ∈ VG. Let ψ denote the ground state of HG,W , let E denote the ground energy,

and let γ denote the gap between the ground energy and the first excited energy. Then,

− 1
2E

Φ
2
H ≤ γ ≤ 2ΦH (3.33)
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where

ΦH = min
S⊂VG

FS

min{CS,CS̄}
(3.34)

FS = ∑
(x,y)∈B

ψ(x)ψ(y) (3.35)

B = {(x,y)|x ∈ S,y /∈ S,(x,y) ∈ EG} (3.36)

CS = ∑
x∈S

ψ(x)2 (3.37)

CS̄ = ∑
x∈VG
x/∈S

ψ(x)2. (3.38)

Note that E < 0 and therefore the lower bound on γ given by (3.33) is nonnegative.

Examining (3.33) one sees that the gap is exponentially small if and only if the ground

state has a pair of not-too-unbalanced lobes separated by a region of exponentially small

amplitude. Choosing S and S̄ to be the lobes, one sees that S and S̄ must have reasonably

well-balanced ground state probabilities for the denominator min{CS,CS̄} to remain large,

and the amplitudes along the cut separating S from S̄ must all be small for the numerator

FS to be small. More precisely, recalling from §3.2 the definition of single-peaked, we have

the following, which is the main result of this section.

Lemma 3.4. Let G be a connected graph with vertices VG, edges EG, and maximum degree

dG. Let W : VG→ R be a potential, and HG,W the corresponding Hamiltonian described in

(3.2). Let ψ denote the ground state of HG,W and let γ denote the eigenvalue gap between

the ground state and first excited state of HG,W . If ψ is single-peaked then

γ ≥ 1
2(|W |+dG)|VG|2

(3.39)

where

|W |= max
x∈VG

W (x)−min
x∈VG

W (x). (3.40)
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Proof. Let

H(−)
G,W = HG,W − (Wmax +dG)1 (3.41)

where Wmax = maxx∈VG W (x). One sees that H(−)
G,W has the same ground state ψ and same

gap γ as HG,W and that all matrix elements in H(−)
G,W are nonpositive. Hence, by proposition

3.3,

γ ≥− 1
2E(−)

(
min
S⊂VG

FS

min{CS,CS̄}

)2

(3.42)

where E(−) is the ground energy of H(−)
G,W , namely

E(−) = E− (Wmax +dG), (3.43)

and FS, CS, and CS̄ are as in (3.35)-(3.38). Graph Laplacians are positive semidefinite, and

therefore E ≥Wmin. Thus,

E(−) ≥−|W |−dG. (3.44)

Hence, (3.42) yields

γ ≥ 1
2(|W |+dG)

(
min
S⊂VG

FS

min{CS,CS̄}

)2

. (3.45)

We now consider two cases: 1) the peak of ψ spans the cut {S, S̄}, and 2) the peak of ψ is

contained entirely within one side of the cut.

Case 1: If the peak of ψ spans the cut then there exist x ∈ S and y ∈ S̄ such that (x,y) ∈ EG

and ψ(x) = ψ(y) ≥ ψ(z) ∀z ∈ VG. We can lower bound γ by throwing away the flows

across all edges in the numerator other than (x,y). Thus,

γ ≥ 1
2(|W |+dG)

(
ψ(x)2

min{CS,CS̄}

)2

. (3.46)
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Furthermore, min{CS,CS̄} ≤ ψ(x)2|VG|, and therefore γ ≥ 1
2(|W |+d)|VG|2

.

Case 2: If the peak of ψ is contained within one side of the cut, we may, without loss of

generality, call the side containing the peak S and the other side S̄. Let xmax be the vertex in

S̄ that maximizes ψ . Because ψ is single-peaked, there must be a neighbor z of xmax such

that ψ(z) > ψ(xmax). Because ψ(xmax) maximizes ψ in S̄, z must be contained in S. We

can lower bound γ by throwing away the flows across all edges in the numerator other than

(xmax,z). Thus,

γ ≥ 1
2(|W |+dG)

(
ψ(xmax)ψ(z)
min{CS,CS̄}

)2

≥ 1
2(|W |+dG)

(
ψ(xmax)

2

min{CS,CS̄}

)2

. (3.47)

Furthermore, CS̄ ≤ ψ(xmax)
2|VG|, and therefore min{CS,CS̄} ≤ ψ(xmax)

2|VG|. Thus, in this

case also, γ ≥ 1
2(|W |+dG)|VG|2

.

3.4.3 Conductance Bound for Path Graphs

Here we note some consequences of proposition 3.4 in the case that G is the path graph

of l vertices, Gl .

Gl = ...
1 2 l

Definition 3.4. Let G be a graph with vertices VG and edges EG. Let W : VG → R be a

potential. We say W is a single-basin potential if the set {x ∈VG|W (x)< E} is a connected

set of vertices in G for all E.

As we now show, single-basin potentials on the path graph have single-peaked ground

states and hence a large eigenvalue gap by proposition 3.4. For intuition, recall that, for a

single particle in the one-dimensional continuum, the time-independent Schrödinger equa-

tion can be written as−d2ψ

dx2 =(E−W (x))ψ . The ground state can be expressed with all real

non-negative amplitudes. Hence the sign of d2ψ

dx2 is the same as the sign of W (x)−E. Thus,
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the ground state of a convex potential has simple structure: inside the well, W (x)−E < 0

and the wavefunction is concave down, whereas outside the well W (x)−E > 0 and the

wavefunction is concave up. The path graph case, described below, is essentially a discrete

analogue to this.

Remark: The notion of a single-basin potential is well-defined on any graph. On path

graphs one can also easily define the notion of a convex potential. Simply think of the l

vertices as corresponding to the integers {1, . . . , l} and demand that the potential on the

vertices be equal to some convex function on R evaluated at these integer points. It is not

hard to show that single-basin is a slightly weaker condition than convex. That is, on the

path graph, all convex potentials are single-basin, but not all single-basin potentials are

convex.

For a wavefunction ψ on the vertices of G, define

∆
2
ψ(x) =−dxψ(x)+ ∑

y∈Nx

ψ(y), (3.48)

where dx is the degree of vertex x and Nx is the set vertices neighboring x. Thus,

LG〉ψ|=− ∑
x∈VG

∆
2
ψ(x)〉x|. (3.49)

Lemma 3.5. Suppose W is a single-basin potential on graph G. Let ψ be the ground state

of the corresponding Hamiltonian HG,W , and let

S[ψ] = {x ∈VG|∆2
ψ(x)< 0}. (3.50)

Then, S[ψ] is a connected set of vertices in G.
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Proof. Let E denote the ground energy of HG,W . Thus, by (3.49),

∆
2
ψ(x) = (W (x)−E)ψ(x) (3.51)

Recall that ψ(x) > 0 ∀x ∈ VG. Thus, ∆2ψ(x) has the same sign as W (x)−E. The con-

nectedness of S[ψ] then follows directly from the single-basin property.

In special case that G is a path graph, the connectedness of S[ψ] implies that ψ has only

one local maximum. Thus, as a corollary of proposition 3.4, one obtains proposition 3.6.

Note that on more general graphs, connectedness of S[ψ] does not imply that ψ has only

one local maximum.

Lemma 3.6. Let W be a single-basin potential on the path graph Gl . Let HG,W be the

corresponding Hamiltonian of the form (3.2). Let γ denote the gap between the ground

energy and first excited energy of HG,W . Then γ ≥ 1
2(|W |+2)l2 where |W |= maxx∈VG W (x)−

minx∈VG W (x).

Proposition 3.6 shows that for single-basin potentials on Gl , the eigenvalue gap obeys

γ = Ω(1/l2). In the special case of a flat potential, it is easy to solve for the eigenvalue gap

exactly, which is O(1/l2). However, the bound of proposition 3.6 is not tight due to the

dependence on |W |. In the next section, we obtain a tighter bound by applying the Poincaré

inequality.

3.5 Poincaré-based Gap Bounds

Two of the main tools for proving lower bounds on the eigenvalue gap of stochastic

matrices are the Cheeger inequality and the Poincaré inequality. Conductance methods,

such as those described in §3.4.1, are originally derived from the Cheeger inequality [22].

For some random walks, the Poincaré inequality yields stronger lower bounds than the
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Cheeger inequality [30, 37], and for other random walks the reverse is true [53]. In §3.5.1,

we recount the version of the Poincaré inequality given in [30] and apply it to Hamiltonians

HG,W of the form (3.2). In §3.5.2 we specialize to the case of path graphs, obtaining a tighter

bound than our conductance-based bound (proposition 3.6). (For a previous example in

which Poincaré’s inequality is used to bound the gap of a Hamiltonian see [19].)

3.5.1 The Poincaré Inequality

Let P be the transition matrix for an ergodic reversible discrete-time random walk on a

graph G. Let π denote the limiting distribution and let γ denote the gap between the highest

and second-highest eigenvalues of P. For any edge e in the graph G, let e1,e2 denote the

vertices at its endpoints. Let Q(e) denote the flow across edge e in the limiting distribution.

Q(e) = πe1Pe1,e2 = πe2Pe2,e1 . (3.52)

The latter equality expresses the reversibility of the random walk. For each ordered pair

(x,y) of distinct vertices in G, choose a canonical path γxy from x to y. Vertices may be

repeated in a path, but no edge may be traversed more than once. Let Γ be the collection of

canonical paths, one for each ordered pair of vertices. For γxy ∈ Γ, let

|γxy|= ∑
e∈γxy

Q(e)−1 (3.53)

where the sum is over the edges in path γxy. Let

κ(Γ) = max
e ∑

γxy3e
|γxy|πxπy. (3.54)

The Poincaré inequality states [30]

γ ≥ 1
κ
. (3.55)
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To obtain a tight bound on γ one must make a good choice of Γ.

Intuitively, the quantity 1
κ

, like the conductance Φ, quantifies the presence of a bottle-

neck across which the flow is small. As an example, consider a graph consisting of two

large subgraphs connected by only a single edge e. In this case, every pair of vertices span-

ning the pair of subgraphs has a canonical path crossing e. Correspondingly, ∑γxy3e|γxy|πxπy

will be large, which implies large κ . Similarly, κ will be large if there are many edges con-

necting the two subgraphs to each other but the flow Q(e) across all such edges is small.

Only in the absence of such bottlenecks does (3.55) yield a large lower bound on the gap.

As in §3.4.2, we use (3.26) to obtain a stochastic matrix P from our Hamiltonian H

such that the eigenvalue gap γ of P relates to the eigenvalue gap γH of H according to

γH =−Eγ, (3.56)

where E is the ground energy of H. The eigenvalue gap of P can be lower-bounded using

the Poincaré inequality. Specifically, by (3.26), we have the following.

Q(x,y) =
ψ(x)ψ(y)
−E

(3.57)

πx = ψ(x)2 (3.58)

κ = max
e ∑

γxy3e
ψ(x)2

ψ(y)2
∑

g∈γxy

−E
ψ(g1)ψ(g2)

. (3.59)

Here ψ is the ground state of H, and g1,g2 are the two vertices connected by edge g. By

(3.56) the ground energy cancels from the final bound on γH . Summarizing:

γH ≥
1
κ ′
, (3.60)
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where

κ
′ = max

e ∑
γxy3e

ψ(x)2
ψ(y)2

∑
g∈γxy

1
ψ(g1)ψ(g2)

. (3.61)

3.5.2 Poincaré Bound for Path Graphs

For path graphs, there is only one valid choice of canonical paths Γ. Specifically, for a

pair of vertices s < f the canonical path is s,s+ 1, . . . , f . For f < s one takes the reverse

path. Thus, (3.61) reduces to

κ
′ = max

1≤ j≤l−1
2 ∑

s≤ j
∑
f> j

R(s, f ) (3.62)

where

R(s, f ) = ψ(s)2
ψ( f )2

∑
s≤v< f

1
ψ(v)ψ(v+1)

. (3.63)

The factor of 2 in (3.62) arises because we sum only over the paths with s < f and use the

fact that R(s, f ) = R( f ,s).

As discussed in §3.4.3, if the potential on the path graph is single-basin, then the ground

state wavefunction has only one local maximum. Thus, the minimum of ψ(v) along a

segment s ≤ v < f must occur at one of the endpoints. If the minimum is at s then (3.63)

yields

R(s, f ) ≤ ψ(s)2
ψ( f )2

∑
s≤v< f

1
ψ(s)2 (3.64)

= ( f − s)ψ( f )2. (3.65)

Similarly, if the minimum is at f then one has R(s, f )≤ ( f − s)ψ(s)2.
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Let J be the value of j that achieves the maximum in (3.62). Then

κ
′ ≤ 2 ∑

s≤J
∑
f>J

( f − s)ψ(bs, f )
2 (3.66)

where bs, f is either s or f depending on which is smaller amongst ψ(s)2 and ψ( f )2. We

can rewrite this sum over pairs of vertices as

∑
s≤J

∑
f>J

( f − s)ψ(bs, f )
2 =

l

∑
b=1

∑
a∈Sb

|a−b|ψ(b)2, (3.67)

where, for a given vertex b, Sb is the set of vertices on the other side of edge J such that

ψ(a)2 ≤ ψ(b)2. (For some b, Sb can be empty.) From (3.67) we have

κ
′ ≤ 2

l

∑
b=1

ψ(b)2
∑

a∈Sb

|a−b| (3.68)

≤ 2
l

∑
b=1

ψ(b)2
l−1

∑
a=1

a (3.69)

=
l

∑
b=1

ψ(b)2l(l−1) (3.70)

≤ l(l−1). (3.71)

The last equality follows from the fact that ψ(b)2 is a probability distribution over 1, . . . , l.

Thus, by (3.60),

γH ≥
1

l(l−1)
. (3.72)

By direct calculation, one finds that the eigenvalue gap for the length l chain with no poten-

tial (W = 0) is 4sin2 ( π

2l

)
. Thus, the bound (3.72) is asymptotically tight to within a factor

of π2 [41].
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3.6 Application to Adiabatic Optimization Algorithms

In this section, we show that, as a corollary of proposition 3.4, adiabatic optimization

algorithms in which the ground state ψ(s) is single-peaked for all s, have minimum gap at

least Ω(1/|VG|2) and therefore run in Õ(|VG|4) time, by an adiabatic theorem [31]. (The

Õ notation indicates that we are omitting logarithmic factors.) This result cannot be used

directly to find algorithmic speedups, as exhaustive search runs in O(|VG|) time. However,

we believe this analysis may be useful in cases of high symmetry such as [33, 54, 57],

where the eigenvalue gap on exponentially large graphs can be determined by analyzing

the spectrum of polynomial-size graphs. In addition, the analysis in this section provides

an illustrative example of how proposition 3.4 may be applied to the analysis of adiabatic

optimization problems.

Consider an adiabatic optimization algorithm using a Hamiltonian HG,W (s) of the form

shown in (3.5). Then

ĤG,W (s) =
1

1− s
HG,W (s) (3.73)

is of the form (3.2) addressed by proposition 3.4. ĤG,W (s) and HG,W (s) have the same

ground state, which we denote ψ(s). Thus, if ψ(s) is single-peaked for all s ∈ [0,1) we

may conclude from proposition 3.4 that

γ̂(s)≥ 1
2
(
|Ŵ (s)|+dG

)
|VG|2

, (3.74)

where Ŵ (s) = s
1−sW is the potential in ĤG,W (s). Hence, one substitutes |Ŵ (s)|= s

1−s |W |

and γ(s) = (1− s)γ̂(s) into (3.74), obtaining

γ(s)≥ 1− s
2
( s

1−s |W |+dG
)
|VG|2

. (3.75)

50



One sees that this lower bound on γ(s) becomes very small as s closely approaches

1. For the final part of the adiabatic optimization algorithm we therefore use a different

method to lower-bound the eigenvalue gap. As an illustrative example, we suppose that the

gap between the minimum of W and the second smallest value taken by W is one. Thus,

by (3.5), γ(1) = 1. Generalization to other values of γ(1) is straightforward and yields the

same scaling with |VG| and dG. At s = 1−δ , one has

H(s) = δLG +(1−δ )W. (3.76)

By Gershgorin’s circle theorem, one sees that the operator norm of LG is at most 2dG. Thus,

the operator norm of δLG is at most 2δdG. Hence, Weyl’s inequalities show that the worst

case is that the addition of δLG to (1−δ )W shifts the ground energy up by 2δdG and shifts

the first excited energy down by 2δdG. Thus, adding δLG to (1−δ )W at worst decreases

the gap from 1−δ to 1−δ −4δdG. Thus,

γ(s)≥ 1
2
− 1

8dG
∀s ∈

[
1− 1

8dG
,1
]
. (3.77)

The degree dG is at least 2 for any connected graph of more than two vertices, so for all

nontrivial cases one has

γ(s)≥ 7
16

∀s ∈
[

1− 1
8dG

,1
]
. (3.78)

For the remaining values of s, (3.75) yields

γ(s)≥
1

8dG

2(8dG|W |+dG) |VG|2
∀s ∈

[
0,1− 1

8dG

]
. (3.79)
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Together, (3.78) and (3.79) yield

γ(s) = Ω

(
1

d2
G|W ||VG|2

)
∀s ∈ [0,1]. (3.80)

The adiabatic theorem of [40] shows that adiabaticity will be maintained by evolving ac-

cording to the linear-interpolation Hamiltonian HG,W (t/τ) with runtime τ bounded by

τ = O

(∥∥dH
ds

∥∥2

γ3

)
. (3.81)

By (3.5),
∥∥dH

ds

∥∥= O(dG + |W |). Thus, by (3.80) and (3.81),

τ = O
(

d6
G|W |3|VG|6(|W |+dG)

2
)
. (3.82)

As shown in [31], a tighter bound on running time can be obtained by choosing a more

optimized interpolation schedule between the initial and final Hamiltonians. Specifically,

one should choose the interpolation such that H(t) is infinitely differentiable but is time-

independent outside of t ∈ [0,τ]. For example, let

H(t) = (1− s(t/τ))LG + s(t/τ)W (3.83)

where s is the following “switching function”, which is infinitely differentiable, and satis-

fies s(0) = 0, s(1) = 1, and s′(x) = 0 ∀x /∈ (0,1):

s(x) =
∫ x

−∞

g(y)dy (3.84)

g(y) =

 0 if y /∈ [0,1]

β exp
(
− 1

y(1−y)

)
if y ∈ (0,1)

. (3.85)

(3.86)
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Here, β is the normalization constant yielding f (1) = 1. In this case, as shown in [31], by

evolving with H(t) from time zero to τ one achieves adiabaticity with runtime

τ = O
(
(log(1/γ))12

γ2

)
. (3.87)

For a Hamiltonian in which the ground state is always single-peaked, (3.87) and (3.80)

yield runtime

τ = Õ(V 4
G). (3.88)
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Chapter 4: One dimensional fundamental gap theorem

4.1 Introduction

The Fundamental Gap Conjecture proposed a tight lower bound of 3π2/D2 to the differ-

ence between the two lowest eigenvalues (the gap) of a Schrödinger operator −∇2 +V (x)

with convex potential V on a compact convex domain Ω ⊂ Rn of diameter D and subject

to Dirichlet boundary conditions. Recently, Andrews and Clutterbuck proved the conjec-

ture for all “semiconvex” potentials (which include convex potentials as a special case) in

arbitrary dimensions [12]. Although the community’s focus has largely centered on the

continuum[12, 14, 46, 61], as early as 1990 Ashbaugh and Benguria saw the potential for

extending their results to discrete Laplacians. In their work, they proved a lower bound

to the gap for a particular class of discrete Laplacians with symmetric-decreasing poten-

tials [15]. Indeed, recent interest in adiabatic quantum computing justifies their vision and

motivates our interest in lifting continuum results to graph Laplacians[33, 35].

Previously to the approach below first found in [41], in the setting of quantum com-

putation, gap bounds were derived on an as-needed basis. For instance, in an analysis of

the power of adiabatic algorithms, van Dam et al. bounded eigenvalue gaps in the min-

imum Hamming weight problem by considering an explicit gap and then bounding the

maximum error on this gap from perturbations[57]. In another instance, Reichardt consid-

ers the eigenvalue gap for an Ising system by using properties of the operator’s principal

submatrices[54]. (At least in the case of the path graph, Reichardt’s Sturm sequences are
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similar in form to our eigenvector recurrence of eq. (4.12). For an explicit examination of

the link between principal submatrices and the eigenvector recurrences, see Gantmakher

and Kreĭn[38].) Unlike the constructions above, this chapter develops a tight bound, gen-

eral bound.

In this chapter, we consider specifically Schrödinger operators corresponding to graph

Laplacians with suitably defined convex potential terms. Here, the potential is restricted to

the vertices and can be seen either as a site-dependent physical potential (as in the physics

literature) or as a weighted graph with loops (as in the mathematical and computer science

literature). Thus, for a graph G = (V,E) with graph Laplacian L(G) and subjected to a

potential W (·) we consider Schrödinger operators of the form

HW (G) = L(G)+W (4.1)

where

[W(V )]i j =W (Vi)δi j. (4.2)

Although our problem is analogous to the Fundamental Gap Conjecture as proven in the

continuum, lifting existing results to the discrete realm and maintaining tight bounds is non-

trivial. Perhaps the most obvious challenge we face is the transition from well-understood

boundary conditions to discrete boundary conditions and, for this reason, this chapter fo-

cuses on only the one dimensional case. In the first case, our restriction is identifiable with

discrete Neumann boundary conditions and thus our result bears some resemblance to the

continuum one of Payne and Weinberger [51] and indeed converges upon this result asymp-

totically. (For the physicist, our path graph Hamiltonian can be viewed as a 1-dimensional

chain with a nearest-neighbor interaction term and a convex, site-dependent potential term.

See Figure 4.1. Up to an identity term, the Laplacian of the hypercube graph of 2N ver-
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tices, H2N , is equivalent to a sum of the Pauli σx operators acting on each of N qubits. In

particular, transverse Ising models such as those studied in [35] can be cast as potentials

on the hypercube. Here, like Reichardt[54] and van Dam et al. [57], but unlike Farhi et

al.[35], we focus on the case that the potential depends only on the Hamming distance from

a minimum. For the hypercube graph see Figure 4.1.)

H2 H4 H8

...1 32 NPN ...

Figure 4.1: The path graph PN of length N and the first three hypercube graphs H2,H4, and H8.

In particular, we show that for convex potentials on the path graph PN of length N the

gap Γ is bounded by the gap corresponding to the flat potential

Γ≥ 2
(

1− cos
(

π

N

))
. (4.3)

On the hypercube graph H2N , for convex potentials dependent only upon vertex Hamming

weight, we prove a similar flat-potential lower bound given by

Γ≥ 2. (4.4)

4.2 Preliminaries

4.2.1 The graph Laplacian and its Eigenvalues

Let G= (V,E) be an undirected graph with vertex set V and edge set E ⊆V ×V . Then

we associate with G a degree matrix D(G) and an adjacency matrix A(G).

We now extend our attention to a more general class of Schrödinger operators of the
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form

HW (G)
def
= L(G)+W(V ) (4.5)

where for some function W : V → R, W is the diagonal matrix defined by

[W(V )]i j
def
= W (Vi)δi j. (4.6)

We can think of the resulting matrix as either the Dirichlet graph Laplacian for some host

graph or as a Schrödinger operator (Hamiltonian) with an external potential. The eigen-

value spectrum of HW (G) is λ1 ≤ λ2 ≤ . . . ≤ λ|V | with associated, normalized eigenvec-

tors u(λ1),u(λ2), . . . ,u(λ|V |). Suppose now that we consider the one parameter family

HW (G;α) with

HW (G) = HW (G;α)
∣∣∣
α=0

. (4.7)

If λk is an eigenvalue of HW (G;α) with no degeneracy, the Hellman-Feynman theorem

governs the relationship between λk and α . That is,

Theorem 1.2. Let H(α) be a Hermitian operator (matrix) dependent upon a parameter α

with non-degenerate eigenvalue λ (α) and associated eigenfunction u(λ ;α). Then

dλ (α)

dα
= ∑

i, j
u∗i (λ ;α)

dH(α)i j

dα
u j(λ ;α)≡

〈
dH(α)

dα

〉
u(λ ;α)

where ui(λ ;α) is the ith component of u(λ ;α).

Assuming that both λ1 and λ2 are non-degenerate eigenvalues, by Theorem 1.2 we have

that
dΓ(α)

dα
= 〈dHW (G;α)

dα
〉u(λ2)− 〈

dHW (G;α)

dα
〉u(λ1) (4.8)
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where if we consider HW (G;α) = HαW (G),

dΓ(α)

dα
= 〈W〉u(λ2)−〈W〉u(λ1). (4.9)

4.2.2 Eigenvectors of HW (G)

In deriving bounds for Γ we make extensive use of the recurrence relations satisfied by

the eigenvectors of HW (G). Expressing the eigenvalue equation

HW (G)u(λ )−λu(λ ) = 0 (4.10)

componentwise, we obtain the following set of linear equations.

(di +Wi−λ )ui(λ ) = ∑
(Vi,V j)∈E

u j(λ ) for Vi ∈V (4.11)

where for simplicity we let Wi =W (Vi).

When G is the path graph, we always consider the labeling of V such that (Vi,Vj) ∈

E =⇒ j = i±1. Then, eq. (4.11) reduces to

(2+Wi−λ )ui(λ ) = ui−1(λ )+ui+1(λ ) for Vi ∈V . (4.12)

Here, to simplify the treatment, we introduce fictitious vertices u0(λ ) and u|V |+1(λ ). We

correspondingly set u0(λ ) = u1(λ ) and u|V |+1(λ ) = u|V |(λ ) for the path graph.

For our purposes, it is often convenient to express eq. (4.12) in terms of difference

equations. For this, we need the forward difference operator.

Definition 4.1 (Forward Difference Operator). For a given sequence (ui), we define ∆, the

forward difference operator, by ∆ui = ui+1−ui. We further define ∆2, the second difference
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operator, by ∆2ui = ui+1−2ui +ui−1.

It is also useful to note that for any sequence (ui),

b

∑
i=a

∆ui = ub+1−ua. (4.13)

Remark. The reader should note that our notation yields ∆(∆ui) 6= ∆2ui. This makes ∆2

a central difference operator, not a forward difference operator. This choice is convenient,

since it allows us to easily keep track of indices as seen below in eq. (4.14).

Now, applying Definition 4.1, eq. (4.12) becomes

∆
2ui(λ ) = (Wi−λ )ui(λ ) (4.14)

which, similar to the second derivative of a continuous function, is an expression of the

convexity of u at ui.

We now define some other useful properties of sequences, which we will apply to both

sequences and vectors without restatement.

Definition 4.2 (Generalized Zero). For a given sequence (ui) we call um ∈ (ui) a general-

ized zero if umum+1 < 0 or um = 0.

Definition 4.3. For a given sequence (ui) we call the piecewise linear curve connecting

Cartesian coordinates (i,ui) the u-line.

Definition 4.4. For a given sequence (ui) we call a point at which the u− line intersects

zero a node and label it by its x-coordinate. From Definition 4.2 if um ∈ (ui) is a generalized

zero, then the u-line has a node at x with x ∈ [m,m+1).

For two sequences (ui),(vi) we will frequently need the discrete analogue of the Wron-

skian, the Casoratian sequence (wi). Suppose that u(µ;β ),u(λ ;α) are two sequences (vec-
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tors) with µ > λ , satisfying eq. (4.12), and parameterized by β and α respectively. Then,

we are interested in

wi(u(µ;β ),u(λ ;α)) = ui+1(µ;β )ui(λ ;α)−ui(µ;β )ui+1(λ ;α) (4.15)

which, when applied to eq. (4.12) yields

∆wi−1(u(µ;β ),u(λ ;α)) = ΘW,i(µ−λ ;β ,α)ui(µ;β )ui(λ ;α) (4.16)

where

ΘW,i(γ;β ,α)
def
= Wi(β )−Wi(α)− γ. (4.17)

4.3 The Path Graph PN

For the path graph PN depicted in Figure 4.1, we are interested in the case of convex

potentials, for which we offer the following definition:

Definition 4.5. Let Ja,bK = {a,a+ 1, . . . ,b− 1,b}. Let PN be the path graph with vertex

set V = {Vi}i∈J1,NK and edge set E = {(Vi,Vi+1)}i∈J1,N−1K. Let W be the set of all convex

functions w : R→ R. We call W : V → R convex if there exists some w ∈ W such that

W (Vi) = w(i) ∀Vi ∈V .

We similarly define the term “linear” and denote its set L .

We begin by using variational arguments to demonstrate that the gap corresponding

to each W ∈ W is bounded from below by the gap corresponding to some L ∈ L . This

approach is modeled on that used by Lavine in the continuum.[46] Then, we use the geom-

etry of the eigenvectors of HL(PN) to demonstrate that the gap of each linear potential L is

bounded from below by the gap for a constant potential.
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4.3.1 The gap for convex potentials is lower bounded by the gap for linear

potentials.

The eigenvalues of HW (PN) are real and ordered λ1 < λ2 < · · ·< λN . Also, recall that

we have introduced fictitious points u0(λ ) and uN+1(λ ) to satisfy the recurrence eq. (4.12).

Then we have the following fact about the intersections of the u(λ1)-line and u(λ2)-line.

Lemma 4.1. Let 0 ≤ λ1 < λ2 be the two lowest eigenvalues of HW (PN) for convex W,

and let u(λ1),u(λ2) be their corresponding eigenvectors. Then, ∃m < n ∈ J1,NK such

that u2
i (λ2)− u2

i (λ1) ≥ 0 for all i ∈ J1,mK∪ Jn+1,NK and u2
i (λ2)− u2

i (λ1) < 0 for all

i ∈ Jm+1,nK.

Proof. The intersections of u(λ1) and u(λ2) can be characterized by the behavior of the

quantity

∆

(
ui(λ2)

ui(λ1)

)
=

ui+1(λ2)ui(λ1)−ui(λ2)ui+1(λ1)

ui+1(λ1)ui(λ1)
(4.18)

≡ wi(u(λ2),u(λ1))

ui+1(λ1)ui(λ1)
. (4.19)

For simplicity, let wi = wi(u(λ2),u(λ1)). Then, in eq. (4.16) we can set α = β = 0,

yielding

∆wi−1 =−Γui(λ2)ui(λ1) (4.20)

and since u0(·)= u1(·) and uN(·)= uN+1(·), w0 =wN = 0. Thus, from eqs. (4.13) and (4.20)
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we have

wn = w0 +
n−1

∑
i=0

∆wi (4.21)

=−Γ

n−1

∑
i=0

ui+1(λ2)ui+1(λ1) (4.22)

= Γ

N−1

∑
i=n

ui+1(λ2)ui+1(λ1). (4.23)

Here, because HW (PN) is a Jacobi matrix, we are free to choose u(λ1) as everywhere

positive and u(λ2) as initially positive with no loss of generality. Further, it is known that

u(λ1) has no generalized zeros and u(λ2) has exactly one, which we identify with uσ (λ2).

(See e.g. Gantmakher.[38]) Then, from eq. (4.22)

wn≤σ = −Γ

n−1

∑
i=0

ui+1(λ2)ui+1(λ1) (4.24)

≤ 0 (4.25)

Similarly, from eq. (4.23)

wn>σ = Γ

N−1

∑
i=n

ui+1(λ2)ui+1(λ1) (4.26)

≤ 0 (4.27)

so that we have wn ≤ 0 ∀ n ∈ J0,NK.

Finally, by eq. (4.19) we arrive at

∆

(
ui(λ2)

ui(λ1)

)
≤ 0 ∀ i ∈ J0,NK . (4.28)

Now, this sequence can be divided into three regions, where we will find that at least two of

these regions are nonempty. Specifically, that this quantity is always decreasing guarantees
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that there exists some choice of m < n ∈ J1,NK such that



(
ui(λ2)
ui(λ1)

)
> 1, i ∈ J1,mK

−1≤
(

ui(λ2)
ui(λ1)

)
≤ 1, i ∈ Jm+1,nK(

ui(λ2)
ui(λ1)

)
<−1, i ∈ Jn+1,NK

(4.29)

and hence (u2
i (λ2)−u2

i (λ1))
N
i=1 has at most two generalized zeros. Further, that ui(λ2),ui(λ1)

are normalized and orthogonal eigenvectors guarantees that (u2
i (λ2)− u2

i (λ1))
N
i=1 has at

least one generalized zero. Thus, our proof is complete.

Using Lemma 4.1 we now prove a discrete analogue of Lemma 3.2 from Lavine[46]:

Lemma 4.2. Let W be the set of convex potentials and L ⊆W be the set of linear poten-

tials. Let u(λ1), u(λ2) be the two lowest eigenvectors of some HW (PN) satisfying eq. (4.29).

Then, ∀W ∈W ∃L ∈L | Γ(HW (PN))≥ Γ(HL(PN)).

Proof. Identify with W (Vi) a convex function w : R→ R such that w(i) = W (Vi) ∀ i ∈

J1,NK. Then, we define the linear function lw : R→ R as

lw(i) =
1

n−m

(
(n− i)w(m)+(i−m)w(n)

)
(4.30)

with n and m defined as in Lemma 4.1, and identify it with the corresponding LW ∈ L .

Notably, LW (Vi)≤W (Vi) ∀ i∈ J1,mK∪Jn+1,NK and L(Vi)≥W (Vi) ∀ i∈ Jm+1,nK. Then,

clearly

〈W−LW 〉u(λ2)−〈W−LW 〉u(λ1) ≥ 0 (4.31)

where equality is obtained only when W = LW .
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Now we consider the Schrödinger operator that satisfies

HW (PN ;α) = HW (α)(PN) (4.32)

and identify with W (α) the convex function w(i;α)

w(i;0) = w(i) (4.33)

dw
dα

(i;α) = lw(·;α)(i)−w(i;α). (4.34)

Thus, by eqs. (4.8) and (4.31) we have that the gap of HW (α)(PN) decreases with α and

additionally that

w(i;α) = e−αw(i)+
∫

α

0

es−α

n(s)−m(s)

(
(n(s)− i)w(m(s);s)+(i−m(s))w(n(s);s)

)
ds.

(4.35)

Hence, as α increases, we have that w(i;α) gets arbitrarily close to a linear function and

therefore W (α) gets arbitrarily close to some function in L .

4.3.2 The gap for linear potentials is lower bounded by the gap for con-

stant potentials.

We start with u(λ2),u(λ1) as the eigenvectors of HW (PN) for some W ∈ W . By

Lemma 4.2 we need only demonstrate that gaps associated with the class of linear po-

tentials are lower bounded by the gaps associated with the constant potential. Because we

are confined to a discrete setting, this takes a bit of work. The overall strategy is as follows:

First, we restrict ourselves to a particular class of linear potentials and demonstrate that

u(λ1) is strictly decreasing. Then, we prove some facts about the ordering of the compo-

nents of u(λ2) around its node. Next, we demonstrate that for positive slopes, u(λ2) always
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has a node left of center. These facts combine to complete our proof.

We introduce the notation [U]i j = (i− 1)δi j for the unit linear potential. Note that for

any linear potential L ∈ L with slope α , the potential αU has the same gap. Thus, we

restrict our study to the unit potential multiplied by some parameter α . Further, symmetry

allows us to restrict ourselves to the case that α ≥ 0.

Our goal is to demonstrate that

dΓ(α)

dα
> 0 (4.36)

for all α ≥ 0.

We make use of the following lemma to reduce to the case that u2
1(λ2)> u2

1(λ1):

Lemma 4.3. Let αU ∈ L where U is the unit-linear potential. Then, for HαU(PN), if

u2
1(λ2)≤ u2

1(λ1), eq. (4.36) is satisfied.

Proof. By eq. (4.8),

dΓ(α)

dα
=

N

∑
i=1

(
u2

i (λ2)−u2
i (λ1)

)
(i−1) (4.37)

=
N

∑
i=1

(
u2

i (λ2)−u2
i (λ1)

)
(i− c) (4.38)

for any constant c. (Recall that the u(λ ) are normalized eigenvectors.) From Lemma 4.1

we know that if u2
1(λ2) ≤ u2

1(λ1) then ∃n < N such that u2
i (λ2)− u2

i (λ1) > 0 for all i > n.

Choosing c = n we get that eq. (4.38) is non-negative for each term of the sum, thus

completing the proof.

Having reduced to the case that u2
1(λ2)≥ u2

1(λ1), we now prove that u(λ1) is a decreas-

ing sequence:
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Lemma 4.4. Let HαU(PN) be defined as in Lemma 4.3. Then, u(λ1) is a decreasing se-

quence. Further, for α > 0, u(λ1) is strictly decreasing.

Proof. First we note that at the boundaries, ∆u0(λ1) = ∆uN(λ1) = 0. Thus we know that

the boundaries are local extrema of the u(λ1)-line. Now, we note that by eq. (4.12)

u2(λ1)

u1(λ1)
= (1−λ1)≤ 1 (4.39)

where the inequality is strict for α > 0 since this requires that λ1 > 0. Thus, the u(λ1)-line

is initially decreasing. Note that from eq. (4.14) when W = U, ∆2ui(λ1) has at most one

sign change. Thus, the second boundary term cannot be a maximum and, therefore, both

boundaries must be global extrema. We therefore have that u(λ1) is decreasing for α ≥ 0

and strictly decreasing for α > 0.

We now recall a theorem by Cauchy and use it to derive an upper bound for λ2:

Theorem 4.1 (Cauchy Interlace Theorem). Let A be an N×N Hermitian matrix with eigen-

values λ1 ≤ λ2 ≤ . . . ≤ λN . Suppose that B is an (N− 1)× (N− 1) principal submatrix

of A with eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µN−1. Then, the eigenvalues are ordered such that

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . .≤ λN−1 ≤ µN−1 ≤ λN .

Proof. For proof, we refer the reader to Hwang. [39]

Lemma 4.5. Suppose that an N×N Hermitian matrix A with N ≥ 3 has the 3×3 principal

submatrix

B(δ ) =


2−δ −1 0

−1 2+α −1

0 −1 2+2α


with δ ≥ 0. Then, if λ2 is the second lowest eigenvalue of A, λ2 ≤ 2+α .
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Proof. Let µ1(δ )≤ µ2(δ )≤ µ3(δ ) be the eigenvalues of B(δ ). That λ2≤ µ2(δ ) is obvious

from repeated applications of Theorem 4.1. From, Theorem 1.2,

dµ2(δ )

dδ
≤ 0 (4.40)

and by direct calculation, µ2(0) = 2+α . Thus, λ2 ≤ 2+α .

Lemma 4.5 now combines with the following fact to give an ordering of the components

of u(λ2):

Lemma 4.6. Let HαU(PN) be defined as in lemma 4.3 and let u(λ ) be an eigenvector.

Define the quantity

ui+ε(λ )
def
= εui+1(λ )+(1− ε)ui(λ ). (4.41)

Then, for ui(λ ) not a generalized zero,

ui+1+ε(λ ) = (2+α( ji+ε −1)−λ )ui+ε −ui−1+ε (4.42)

for some ji+ε ∈ [i, i+1].

Proof. First, note that from eq. (4.12)

ui+1+ε(λ ) = (2−λ )ui+ε(λ )+α (iεui+1(λ )+(i−1)(1− ε)ui(λ ))−ui−1+ε(λ ). (4.43)

Now, with sign(ui+1(λ )) = sign(ui(λ )), there exists a ji+ε ∈ [i, i+1] such that

iεui+1(λ )+(i−1)(1− ε)ui(λ ) = ( ji+ε −1)(εui+1(λ )+(1− ε)ui(λ )) . (4.44)
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Thus, eq. (4.43) becomes

ui+1+ε(λ ) = (2+α( ji+ε −1)−λ )ui+ε(λ )−ui−1+ε(λ ). (4.45)

Lemma 4.7 (Ordering u(λ2)). Let HαU(PN) be defined as in Lemma 4.3. Let x repre-

sent the first node of the u(λ2)-line and let um(λ2) be the corresponding generalized zero.

Suppose that x≤ (N +1)/2. Let ui+ε(λ ) be defined as in Lemma 4.6. Then,

−1≥


um+k+ε (λ2)

um−1−k+ε (λ2)
for m≤ x≤ m+

1
2

and k ∈ J0,m−1K

um+k+ε (λ2)
um−k+ε (λ2)

for m+
1
2
< x≤ m+1 and k ∈ J1,mK.

(4.46)

Proof. We proceed to prove this lemma by induction. First, consider the case that m+

1/2≤ x < m+1 for some m ∈ J1,bN/2cK. For simplicity, let u(λ2) = u. Then, there exists

an ε such that (1− ε)um + εum+1 = 0. So, from eq. (4.43) we can consider the base case

um+1+ε = εαum+1−um−1+ε (4.47)

<−um−1+ε . (4.48)

For the induction, rearrange eq. (4.42) for terms left and right of the node,

um+k+2+ε +um+k+ε

um+k+1+ε

− um−k−2+ε +um−k+ε

um−k−1+ε

= α( jm+k+1+ε − jm−k−1+ε)> 0. (4.49)

Now assume
um+k+ε

um+k+1+ε

≤ um−k+ε

um−k−1+ε

(4.50)
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thus, by eq. (4.49)
um+k+2+ε

um+k+1+ε

≥ um−k−2+ε

um−k−1+ε

. (4.51)

Thus,
um+k+2+ε

um−k−2+ε

≤ um+k+1+ε

um−k−1+ε

. (4.52)

Finally, taking k = 0, eq. (4.47) satisfies eq. (4.50) and

um+k′+ε

um−k′+ε

≤−1 (4.53)

for all k′ ∈ J1,mK.

Next we consider the case that m≤ x < m+1/2. In this case, by Definition 4.4 we can

choose ε such that um+ε =−um−1+ε . Then,

um+k+1+ε +um+k−1+ε

um+k+ε

− um−k−2+ε +um−k+ε

um−k−1+ε

= α( jm+k+ε − jm−k−1+ε)> 0. (4.54)

This time, assume
um+k−1+ε

um+k+ε

≤ um−k+ε

um−k−1+ε

(4.55)

then, by eq. (4.54)
um+k+1+ε

um+k+ε

≥ um−k−2+ε

um−k−1+ε

. (4.56)

Hence,
um+k+1+ε

um−k−2+ε

≤ um+k+ε

um−k−1+ε

. (4.57)

Again, taking k = 0, we have that

um+k′+ε

um−1−k′+ε

≤ um+ε

um−1+ε

≤−1. (4.58)
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for all k′ ∈ J0,m−1K.

Now, we recall a theorem due to Gantmakher and Kreĭn:[38]

Theorem 4.2. Let u(µ;α),u(λ ;β ) be two vectors of length N satisfying eq. (4.12) and with

ΘW,i(µ−λ ;α,β )≤ 0 ∀ i ∈ Jm,nK (4.59)

where ΘW,i(µ−λ ;α,β )< 0 for at least some i ∈ Jm,nK. We extend both vectors to length

N+2 by including nodes at u0 and uN+1. (So long as eq. (4.12) is satisfied, despite previous

choices of u0 and uN+1, these points are always considered nodes.) Let η ∈ [m−1,m),ξ ∈

(n,n+ 1] be two adjacent nodes of u(λ ;β ) with m ≤ n ∈ J0,N +1K. Then there exists at

least one node of u(µ;α) between η and ξ .

Proof. This fact is adapted directly from Gantmakher and Kreĭn, with modifications made

to allow for our parameterization. The argument is provided in detail in Appendix A for

the unfamiliar reader.

Lemma 4.8. Let HαU(PN) be defined as in Lemma 4.3. u(λ2) always has a node at or left

of x = (N +1)/2.

Proof. We only want to consider variations with respect to one parameter, so we fix λ =

µ0,α = β0. Then, we note that, by eq. (4.17), ΘU,i is an increasing sequence in i. Now, we

assume that there exists a node of u(µ0) at x = (N + 1)/2. Next, at β = β0 and µ = µ0,

ΘU,i is identically 0. Then,

dΘU,i

dβ

∣∣∣∣
µ=µ0

=Ui−
dµ

dβ

∣∣∣∣
µ=µ0

=Ui−〈U〉u(µ0) (4.60)

Our assumption that u(µ0) at x = (N + 1)/2 requires that ε = 1 in Lemma 4.7. Then,

Lemma 4.7 becomes an exact statement about the ordering of the components of u(µ0).
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Hence, 〈U〉u(µ0) ≥ (N−1)/2 and we have that

UbN+1
2 c−〈U〉u(µ0)

≤UbN+1
2 c−

N−1
2

(4.61)

=

(⌊
N +1

2

⌋
−1
)
− N−1

2
(4.62)

≤ 0. (4.63)

Further, in the same fashion

UbN+1
2 −1c−〈U〉u(µ0)

< 0. (4.64)

Hence, for some β−β0 = ξ > 0 with ξ sufficiently close to 0, ΘU,i≤ 0∀ i∈ J1,b(N +1)/2cK

with at least some i such that ΘU,i < 0. Thus, at β = β0 the node of u(λ2) shifts left as β

increases. Note that if β = β0 = 0, symmetry forces the node of the u(µ)-line to occur at

x = (N +1)/2. Thus, there is initially a node at (N +1)/2 and whenever there is a node at

x = (N +1)/2 it shifts left. Hence, there is always a node at or left of (N +1)/2.

Remark. In fact, with some of the facts that follow, we demonstrate that the node shifts left

with increasing α . For proof, see Appendix B.

Lemma 4.8 allows us to strengthen Lemma 4.7 through the following fact:

Lemma 4.9. Let HαU(PN) be defined as in Lemma 4.3. Let x represent the first node of

the u(λ2)-line. Then, there exists a symmetric region S = J1,mK about x such that u(λ2) is

a decreasing sequence.

Proof. We begin by considering the first point after the node such that u(λ2) is increasing

and label it by m such that ∆um(λ2)∆um−1(λ2)< 0. Then,

um+1(λ2) = (2+α(m−1)−λ2)um(λ2)−um−1(λ2). (4.65)
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Now, rearranging eq. (4.65)

um(λ2) =

(
2+
(

1− um+1(λ2)

um(λ2)

)
+α(m−1)−λ2

)
um(λ2)−um−1(λ2). (4.66)

Note that in eq. (4.66), because um(λ2)≤ um+1(λ2)< 0, we know that 1> um+1(λ2)/um(λ2)

and thus (ui(λ2))i∈J1,mK is an eigenvector of HW (Pm) where

Wi = αUi +δim

(
1− um+1(λ2)

um(λ2)

)
. (4.67)

By Lemma 4.8 the second eigenvector of HαU(Pm) has a node left of center. Since λ2 is

greater than the second eigenvalue of HαU(Pm) and we know that W is identical to U in

all but the mth component, we have by Theorem 4.2 that (ui(λ2))i∈J1,mK has a node left of

center. Further, by our assumptions, (ui(λ2))i∈J1,mK is a decreasing sequence. Therefore,

there exists a symmetric region S= J1,mK about x such that u(λ2) is strictly decreasing.

Using Lemma 4.9 we now prove a corollary to Lemma 4.7 that holds regardless of

whether the node falls directly on a vertex:

Corollary 4.1. Let HαU(PN) and x be defined as in lemma 4.7. Let u(λ2) be a decreasing

sequence. Then,

−1≥


um+k+1(λ2)
um−k(λ2)

for m≤ x≤ m+
1
2
∀k ∈ J0,m−1K

um+2+k(λ2)
um−k(λ2)

for m+
1
2
< x≤ m+1∀k ∈ J1,mK.

(4.68)

Proof. For the first case, assume that m+1/2≤ x < m+1 for some m ∈ J1,bN/2cK. Then,

from Lemma 4.7 we have that

−1≥ um+k+ε(λ2)

um−k+ε(λ2)
for m+

1
2
< x≤ m+1∀k ∈ J1,mK. (4.69)
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Then, since u(λ2) is decreasing, um+1+k ≤ um+k+ε and also um−k+ε ≥ um+1−k. Thus,

−1≥ um+k+ε(λ2)

um−k+ε(λ2)
≥ um+1+k(λ2)

um+1−k(λ2)
. (4.70)

Similarly, for the case that m≤ x < m+1/2, we have that

−1≥ um+k+ε(λ2)

um−1−k+ε(λ2)
for m≤ x≤ m+

1
2
∀k ∈ J1,m−1K. (4.71)

In this case, we have that um−1−k+ε ≥ um−k. So that finally,

−1≥ um+k+ε(λ2)

um−1−k+ε(λ2)
≥ um+1+k(λ2)

um−k(λ2)
. (4.72)

Theorem 4.3. For PN ,

ΓW∈W ≥ 2
(

1− cos
(

π

N

))
. (4.73)

Proof. From Theorem 1.2 we know that so long as 〈U〉u(λ2)− 〈U〉u(λ1) > 0, the gap is

increasing.

Consider a set of indices Sm symmetric about m, the index corresponding to the first

generalized zero um(λ2) of u(λ2). Now, define v(λi) = (u(λi))i∈Sm
. From Lemmas 4.4

and 4.7 we know that

〈U〉v(λ2)
≥ 〈U〉v(λ1)

. (4.74)

where we restrict U to the same number of terms as v(λ2). By Lemma 4.8 we know that the

node of the u(λ2)-line must occur at or before the midpoint of u(λ2). Thus, Sm can be taken

as Sm = J1,2m+1K. By Lemma 4.3 we restrict ourselves to the case that u2
1(λ2)> u2

1(λ1).

With this restriction, Lemmas 4.4 and 4.7 insist that u2
k(λ2)> u2

k(λ1) ∀k ∈ J1,NK/Sm. It is
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then obvious that

〈U〉u(λ2)
≥ 〈U〉u(λ1)

(4.75)

for α ≥ 0. Thus, we know that Γ is at a minimum for α = 0. Now, at α = 0 we find that

λ1 = 0 and thus Γ = λ2. Hence,

ΓW∈W ≥ 2
(

1− cos
(

π

N

))
. (4.76)

4.4 The Hypercube Graph

In this section we find a tight lower bound for the gap for Hamming-symmetric convex

potentials on the N-dimensional hypercube graph H2N = (V,E). To define H2N , we identify

with each vertex Vi ∈V a unique vector bi ∈ {0,1}N . Then, we choose E = {(Vi,Vj) | |vi−

v j|= 1}, where |·| here denotes the 1-norm. (In the language of computer science, bi,b j are

bit-strings and |bi−b j| is their Hamming distance.) As in (4.5) the Schrödinger operator

includes a potential term W. Thus, an eigenvector u(λ ) of eigenvalue λ satisfies

(N +Wi−λ )ui(λ ) = ∑
(Vi,V j)∈E

u j(λ ) for Vi ∈V . (4.77)

Here we restrict our attention to the case that the potential depends only on Hamming

distance from the vertex of minimum potential. We can label this minimum by the all zeros

string, and therefore Wi =W|bi|. In this case, the set of Hamming-symmetric vectors are an

invariant subspace of the Schrödinger operator.

Remark. In the language of quantum-mechanics, this is the space spanned by the N + 1

state vectors that are uniform superpositions over bit-strings of a given Hamming weight.
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By Schrödinger’s equation, no time-evolution induced by a (possibly time-dependent) Ham-

ming symmetric Hamiltonian will ever drive transitions out of this subspace. For many

cases, it is only the gap within this subspace that is of interest.

Below, we will bound the gap within the Hamming-symmetric subspace. Here, the

(normalized) uniform superpositions over bit-strings of each Hamming weight form an

orthonormal basis for this subspace. Given a state-vector u(λ ), let vm(λ ) denote the inner

product of u(λ ) with the Hamming-weight-m basis vector. That is,

vm(λ ) =
1√(N

m

) ∑
|bi|=m

ui(λ ). (4.78)

Because u(λ ) lies within the symmetric subspace, this corresponds to rewriting the

vector in a different basis. For arbitrary vectors in the full Hilbert space, this would be a

projection onto the symmetric subspace.

Then, with a bit of work, eq. (4.77) becomes

(N +Wm−λ )vm(λ ) = h(m−1)vm−1(λ )+h(m)vm+1(λ ) (4.79)

where

h(m) =
√
(m+1)(N−m). (4.80)

Now, we know that eq. (4.79) is the recurrence relation satisfied by some Jacobi matrix

J with eigenvalue λ ∈ (λi)
N
i=1. In keeping with our typical ordering, we choose λ1 < λ2 <

· · · < λN . Further, since we know that we can shift the diagonal by any c1,c ∈ R without

altering the gap, we instead consider J→ J−N1 which satisfies the recurrence relation

(Wm−λ )vm(λ ) = h(m−1)vm−1(λ )+h(m)vm+1(λ ) (4.81)
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without any loss of generality.

Remark. The reader should note that unlike Section 4.3, v0(λ ) is not a boundary term, but

vN+1(λ ) is. This inconsistency is an artifact of labeling vertices by their Hamming weights

as there are vertices with Hamming weight 0, but none with Hamming weight N + 1. The

boundary terms will be defined where appropriate.

Now, we define the transformation,

v′m(λ )
def
= f (m)vm(λ ) (4.82)

where f (m) is given by

f (m)
def
=


f0 ∏ j∈Odd

0< j<m

h( j−1)
h( j) if m is even

f1 ∏ j∈Even
0≤ j<m

h( j−1)
h( j) if m is odd

(4.83)

and we choose,
f1

f0
=

√
N Γ(N)

2N−1(Γ(N+1
2 ))2

(4.84)

where the Γ above represents the gamma function, not the gap.

With this transformation, we have from eqs. (4.81) and (4.82)

v′m−1(λ )−2v′m(λ )+ v′m+1(λ ) =
f (m)

h(m)
f (m+1)(Wm−qm−λ )v′m(λ ) (4.85)

where

qm
def
=

2h(m) f (m+1)
f (m)

. (4.86)

Here, our choice of qm (alternatively our choice of f1/ f0) maintains symmetry and consis-

tency across various choices of N.
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Now we consider the Casoratian sequence corresponding to eq. (4.16).

wi(v′(λ2),v′(λ1)) = v′i+1(λ2)v′i(λ1)− v′i+1(λ1)v′i(λ2) (4.87)

For consistency, we choose v′−1(·) = v′N+1(·) = 0 and we get that w−1 = wN+1 = 0.

Then, from eq. (4.85), similarly to eq. (4.20), we have that

∆wk−1 =−Γ
f (k)

h(k) f (k+1)
v′k(λ2)v′k(λ1). (4.88)

We note that since v(·) are the eigenvectors of a Jacobi matrix, v(λ1) has no generalized

zeros and v(λ2) has precisely one generalized zero. Then, since f (m)> 0 ∀m ∈ J0,NK we

know that v′(λ1) has no zeros and v′(λ2) has precisely one. Thus, labeling the generalized

zero of v′(λ2) by n, we have that

wm≤n =
m−1

∑
k=−1

∆wi (4.89)

= −Γ

k−1

∑
k=−1

f (k)
h(k) f (k+1)

v′k(λ2)v′k(λ1) (4.90)

< 0 (4.91)

and similarly

wm>n = −
N

∑
k=m

∆wi (4.92)

= Γ

N

∑
k=m

f (k)
h(k) f (k+1)

v′k(λ2)v′k(λ1) (4.93)

< 0 (4.94)

so that wi < 0 ∀ i ∈ J0,NK. As we have already seen in eq. (4.29), this guarantees that
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(
v′2i (λ2)− v′2i (λ1)

)N

i=0
has at most two generalized zeros. Now, because we have that

v′2i (λ2)− v′2i (λ1) = f (k)2 (v2
i (λ2)− v2

i (λ1)
)

(4.95)

v′2i (λ2)− v′2i (λ1) has the same sign as v2
i (λ2)− v2

i (λ1) and thus,
(
v2

i (λ2)− v2
i (λ1)

)N
i=0 has

at most two generalized zeros. That v(λ2) is orthogonal to v(λ1) guarantees that it has at

least one generalized zero.

At this point, we have satisfied the necessary conditions to apply an obvious analogue

of Lemma 4.2:

Lemma 4.10. Let W be the set of convex potentials and L ⊆ W be the set of linear

potentials. Let u(λ1), u(λ2) satisfying eq. (4.29) be real-valued eigenvectors corresponding

to the two lowest eigenvalues of some matrix HW (PN)+M with real eigenvalues, where M

is an arbitrary N×N matrix independent of W. Then, ∀W ∈W ∃L ∈L | Γ(HW +M)≥

Γ(HL +M).

Proof. We note that because Lemma 4.2 depends only upon the variational term W(α),

when some matrix some matrix HW (PN)+M satisfies eq. (4.29), the proof is identical to

that of Lemma 4.2. Therefore, this proof is omitted.

The reduced Hamming-symmetric matrix corresponding to eq. (4.79) is equivalent to

HW (PN+1)+M for some choice of M. Thus, by Lemma 4.10 it has a lower bound for

a linear, Hamming-symmetric potential. Now, for such a linear potential we can consider

αLi = α(i−N/2). Here, the eigenvalues are exactly solvable and given by

λk = k
√

4+α2 ∀k ∈ {−N/2,−(N−1)/2, . . . ,(N−1)/2,N/2}. (4.96)
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Then,

ΓαL∈L =
√

4+α2 (4.97)

which is clearly minimized for α = 0. Thus, for convex, Hamming-symmetric potentials

on the hypercube

Γ≥ 2 (4.98)

within the Hamming-symmetric subspace.
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Chapter 5: Modulus of continuity oscillation estimates

5.1 Introduction

This chapter studies the spectral structure of combinatorial graph Laplacians by adapt-

ing recent advances in the spectral theory of Schrödinger operators on Rn. To proceed, we

introduce a technique based largely on the work of Ben Andrews, Julie Clutterbuck, and

collaborators [8–13]. Additionally, we attempt an approach similar to [12] to bounding the

spectral gap. In graph theory, the current setting, these Hamiltonians correspond to Lapla-

cians of subgraphs of weighted graphs with Dirichlet boundary, as discussed in Sections 2.2

and 5.4 and elaborated on in [25]. Much of this chapter is taken verbatim from [43].

That the lowest eigenvalue of H is no longer 0 and the corresponding eigenvector is

nonuniform makes determining the spectral gap of H a more challenging problem than

that of a simple graph Laplacian. In this chapter, we reduce such a bound to an estimate

involving the log-concavity of the lowest eigenvector u0 of H.

Our approach follows [12], where the authors proved the Fundamental Gap Conjecture.

In particular, we study the behavior of oscillations in functions defined on the graph V (S).

In [12], the authors studied the time-extended behavior of these oscillation terms when

introduced into the heat equation, since such terms cannot decay any slower than Ce−λ1(L)t

for some constant C. These oscillation terms are characterized by a modulus of continuity,

a construct which typically tracks how uniformly continuous a function is, but we can

think of as quantifying the size of oscillations separated by a particular distance. More
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specifically, for a function f : V (S)−→ R we say that it has modulus of continuity η if

| f (y)− f (x)| ≤ η(d(y,x)) for all y,x ∈V (S)

where d(y,x) is the shortest path length between vertices y,x ∈ V (S). We will further for-

malize this modulus in Section 5.3.1.

By sacrificing some tightness, one can apply modulus of continuity estimates without

utilizing the heat equation at all. Instead one can derive bounds in terms of the `2-norm of

the modulus. Nonetheless, our intuition stems from the heat equation and we expect that

the heat equation will prove useful in subsequent work, so we derive our results from this

perspective.

In Section 5.3.1, we prove the primary result of this paper:

Theorem 5.1. Let L be the combinatorial Laplacian for a strongly convex subgraph S⊆G

of an invariant homogeneous graph G. Then,

λ1(L)≥ 2
(

1− cos
(

π

D+1

))

where D is the diameter of S.

This theorem gives a nice lower bound to the spectral gap of combinatorial Laplacians

in terms of the diameter of the corresponding graph. Although there is a long history

of results comparing eigenvalues to diameters, this particular bound relates λ1(L) to the

first eigenvalue of the path graph of D+ 1 vertices. This bound is also tight, since it is

always achieved for S ⊂ G such that S is the path graph with D edges. As a corollary to

Theorem 5.1, this bounds the eigenvalues of the normalized laplacian L of S. Thus, this

provides a tight bound comparable to that of [23], where the author derives a lower bound

of 1/(8kD2) for the Neumann eigenvalues of S where k is the degree of S.
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In Section 5.3.3, the proof strategy of Theorem 5.1 is adapted to the case of the hyper-

cube graph. In particular, we recover the following, well-known bound:

Theorem 5.2. Let L be the combinatorial Laplacian for a hypercube graph. Then, λ1(L)≥

2.

Since one can directly calculate that λ1(L) = 2 independently of D, this result is tight

and demonstrates the power of modulus of continuity estimates adapted to spectral graph

theory. In physical contexts, this estimate may also prove useful. We begin to explore such

physical cases in Section 5.4, where we consider matrices of the form H = L+W where

W is any diagonal matrix and L is a combinatorial Laplacian. For simplicity, we restrict W

to be positive-semidefinite, but since the spectral gap of H is unaltered by an addition of a

constant multiple of the identity matrix, our results apply equally well to all diagonal W .

In particular, we derive the following bound on the spectral gap γ(H) = λ1(H)−λ0(H):

Theorem 5.3. Let (u0,λ ) and (u1,λ + γ) be the two lowest eigenvector-eigenvalue pairs

of H = L+W where L is a combinatorial Laplacian of a strongly convex subgraph of an

invariant homogeneous graph and W is a diagonal positive-semidefinite matrix. Let the

componentwise ratio f = u1/u0 have modulus of continuity η and g = log(u0). Then,

γ ≥ 2Cu0

(
1− cos

(
π

D+1

))

where D is the diameter of S,

Cu0 = inf
(y,x)∈ξ

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)
,

and

ξ =
{
(y,x) ∈V (S) | η

(
|y−1x|

)
= f (y)− f (x)

}
.
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Above, ∆a f (x) = f (ax)− f (x) for x ∈ V (S). This result reduces the task of bounding

γ(H) to determining an appropriate constant Cu0 and is motivated similarly to the approach

taken in [12], where the authors prove the longstanding fundamental gap conjecture.

Extending results of the fundamental gap literature to discrete Laplacians was first con-

sidered by Ashbaugh and Benguria in Ashbaugh1990, where the authors proved a fun-

damental gap-type theorem for the case of symmetric, single-well potentials on a one-

dimensional Dirichlet Laplacian. More recently, in [41] we proved another fundamen-

tal gap-type theorem for the case of convex potentials on one-dimensional combinatorial

Laplacians and Hamming-symmetric convex potentials on hypercube combinatorial Lapla-

cians by following the method of Lavine1994a. In the context of hypercube combinatorial

Laplacians L, we find in Section 5.4:

Theorem 5.4. Let (u0,λ ) and (u1,λ + γ) be the two lowest eigenvector-eigenvalue pairs

of H = L+W where L is the combinatorial Laplacian of a Hypercube graph G and W is

some diagonal positive-semidefinite matrix. Let the componentwise ratio f = u1/u0 have

modulus of continuity η . Let g = log(u0). Then, γ ≥ 2Cu0 with

Cu0 =

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)

for y,x ∈V (G) such that f (y)− f (x) = η(2).

Here, Cu0 is restricted to admit y,x only if they are separated by at most a path of length

2. Hence, Theorem 5.4 presents a much more local property than Theorem 5.3.

We also make use of a modulus of concavity ω of log(u0) where u0 is the ground-state

of the operator H. By modulus of concavity, we mean that for each pair of y,x ∈V (S) and
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some generator a ∈K falling along a shortest path connecting y to x,

∆a log(u0(y))+∆a−1 log(u0(x))≥ ω(d(y,x)) for all x,y ∈V (S).

We apply the results of Section 5.4 to the case of path graphs with log-concave ground

states to obtain the following bound:

Theorem 5.5. Suppose H = L+W with ground state u0, where L is the combinatorial

Laplacian for some path graph S with diameter D and W : V (S)−→ R≥0. Then,

γ(H)≥ 4(2cosh(ω)−1)
(

1− cos
(

π

2D+1

))
≥ 4

(
1− cos

(
π

2D+1

))

for log(u0) having non-negative modulus of concavity ω and ω = infs ω(s).

We can actually apply a closer analysis in deriving Theorem 5.5, assuming that we

know a bound on the gradient of the modulus of concavity ω:

Theorem 5.6. Suppose H = L+W with ground state u0, where L is the combinatorial

Laplacian for some path graph S with diameter D and W : V (S)−→ R≥0. Then,

γ(H)≥ 4
(

1− cos
(

π

2D+1

))
+2inf

s

(
∆
− cosh(ω(s))

)
for log(u0) with non-negative modulus of concavity ω where ω(D + 1) = 0 and ω =

infs ω(s). Above,

∆
− cosh(ω(s)) = cosh(ω(s))− cosh(ω(s+1)).

This equation is particularly useful if we choose the modulus of concavity of ω to be
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convex. Such a restriction is always possible without altering our analysis, because we

are concerned with finite graphs, but these considerations will be discussed in future work.

Under such restrictions, Theorem 5.6 provides the bound

γ(H)≥ 4
(

1− cos
(

π

2D+1

))
+2(cosh(ω)−1) (5.1)

with ω defined as in Theorem 5.5. It is easy to see that Theorem 5.6 is indeed an improve-

ment over Theorem 5.5.

5.2 Preliminaries

In this paper we restrict our attention to spectra of invariant, homogeneous graphs and

their strongly convex subgraphs. We introduce some algebraic tools for discussing such

graphs in Section 5.2.1. In Section 5.2.2, we introduce the combinatorial Laplacian and

properties of its spectra.

5.2.1 Invariant homogeneous graphs

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). We call G ho-

mogeneous if there exists a group H acting on G such that for {u,v} ∈ E(G), {au,av} ∈

E(G) ∀ a ∈H and ∀u′,v′ ∈V (G) ∃ a0 ∈H such that a0u′ = v′. We call the set K ⊂H

the edge generating set if a ∈K ⇐⇒ {v,av} ∈ E(G) ∀ v ∈V (G).

We restrict to the case that G is undirected; hence, if {v,av} ∈ E(G) we also have that

{av,v} ∈ E(G). This restriction is equivalent to requiring that a ∈K ⇐⇒ a−1 ∈K .1 To

simplify our problem further, we reduce our class of graphs by insisting that these graphs

be invariant homogeneous graphs, or that aK a−1 = K ∀ a ∈K .

1Note that if v = av and g(av) = v, then g = a−1.
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We also need a notion of distance in the graph. Typically, we use d(x,y), the length of

the shortest path connecting vertex x to vertex y. In our setting, it helps to formalize this in

group-theoretic terms. Because we are considering invariant homogeneous graphs, we can

take d(x,y) = |w|, where |·| represents the word metric over K and |w| is the length of the

shortest word w written in terms of elements of K such that wx = y.

Lemma 5.1. Let G be an invariant homogeneous graph with generating set K . Then, for

x,y ∈V (G) and a ∈K , d(ax,ay) = d(x,y).

Proof. This follows immediately from the equivalence of the shortest path and the word

metric. Begin by writing wx = y. Then, for some a ∈K , awa−1(ax) = ay. By invariance,

|awa−1|= |w| and we have that d(ax,ay) = d(x,y).

Because Lemma 5.1 demonstrates the proper equivalence between the word-metric

measured in generators of K and the distance between vertices y,x, we will write |y−1x| to

represent d(y,x).

Now, let S be an induced subgraph of G. We label the boundary of S by δS = {v ∈

V (G) \V (S)|v ∼ u ∈ S}. S is said to be strongly convex if it satisfies the following two

(equivalent) properties:

1. For all pairs of vertices y,x ∈ S, the shortest path connecting y to x is also in S.

2. For all a,b ∈K , x ∈ δS, if ax ∈ S and bx ∈ S then b−1a ∈K .[23]

Lemma 5.2. Let S ⊆ G be a strongly convex induced subgraph of an invariant homoge-

neous graph G. If x,ax,y ∈ S and d(ax,y) = d(x,y)+1, then ay ∈ S.

Proof. Suppose that x,y ∈ S and d(ax,y) = d(x,y) + 1. By Lemma 5.1, we know that

d(ax,ay) = d(x,y) and thus there exists a shortest path traversing ax→ ay→ y. Hence,

ay ∈ S.
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5.2.2 Graph Laplacians

The focus of this paper is the combinatorial Laplacian L of a graph S which for all

x,y ∈ S is given by

L(x,y) =


dx if x = y

−1 if x∼ y

0 otherwise

(5.2)

where dx is the degree of vertex x. L can also be identified with an operator on the space of

functions u : V (S)−→ R satisfying

Lu(x) = ∑
y∼x

(u(x)−u(y)) . (5.3)

The reader should note that the operator L in eq. (5.3) should be understood to apply to

u before u is evaluated at the vertex x. In the case that S is an induced subgraph of a

homogeneous graph G with edge generating set K , we can equivalently write

Lu(x) = ∑
a∈Kx

(u(x)−u(ax)) (5.4)

where Kx = {a ∈K | ax /∈ δS}. Here Kx is simply the set that generates all vertices in S

adjacent to some particular vertex x ∈V (S).

The operator L corresponding to a connected graph has eigenvalues λ0(L)< λ1(L)≤ . . .

≤ λ|V (G)|−1(L) and corresponding eigenvectors u0(L),u1(L), . . . , u|V (G)|−1(L) with λ0(L)=

0 and

λ1(L) = inf
u⊥1

∑
x∼y

(u(x)−u(y))2

∑
x

u2(x)
(5.5)

where 1 is the constant function. u attaining the infimum in eq. (5.5) is called a combina-
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torial harmonic eigenfunction of S and can be identified with an eigenvector of L. If (u,λ )

is an eigenvector-eigenvalue pair of L, then u satisfies

−λu(x) = ∑
y∼x

(u(y)−u(x)) . (5.6)

Although eq. (5.6) is the standard definition of an eigenvector and can be obtained by in-

specting eq. (5.3), the expression can also be derived through through variational techniques

on eq. (5.5)[25].

5.3 Main Results

5.3.1 Strongly convex subgraphs of invariant homogeneous graphs

Heat kernel techniques are one of the more powerful approaches to proving eigenvalue

bounds [25]. In this section, we adapt the approach of [9] to combinatorial Laplacians. This

technique has the advantage of often being easier to handle than known techniques, such

as those of [18, 23–26], while often retaining (and potentially sharpening) these bounds. In

particular, the results of this section are comparable to those of [23].

For a graph G with diameter D, we begin by considering solutions to the initial value

problem 
d(s,t)φ

dt =−Lφ(s, t)

φ(s,0) = φ0(s).
(5.7)

Clearly, if we let φ0 = u for an eigenvector-eigenvalue pair (u,λ ) of L, we have that φ(s, t)=

u(s)e−λ t solves eq. (5.7). Our strategy, then, is to consider the decay rate of oscillations

in u. Since λ0(L) = 0, the slowest such oscillations decay is proportional to e−λ1t . Thus,

if we bound the decay rate of these oscillations, we implicitly bound on the spectral gap.

To characterize the magnitude of oscillations, we introduce the modulus of continuity for a
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function defined on a graph.

For a function f : V (G)×R+ −→ R, we call η : [−D,D]×R+ −→ R its modulus of

continuity if

η(s, t) =


supy,x∈V (G)

{
f (y, t)− f (x, t) | |y−1x| ≤ s

}
s > 0

0 s = 0

−supy,x∈V (G)

{
f (y, t)− f (x, t) | |y−1x| ≤ −s

}
s < 0

(5.8)

Although traditionally we would define the modulus only over non-negative s, defining it

as an anti-symmetric function about the origin is advantageous for the analysis that fol-

lows. Importantly, our choice of η is monotonic and sub-additive, which further simplifies

many of the arguments that follow. In future settings, however, it may be worth utilizing

alternatively restricted moduli, such as concave moduli. Since we are interested in finite

graphs, there always exists a concave function that both lies above and touches η . In fact

the analysis that follows applies to these moduli equally well, but would require more detail

than is necessary in the current context.

To prove Theorem 5.1, we need the following fact.

Lemma 5.3. Suppose S ⊆ G is a finite strongly convex subgraph in an invariant homoge-

neous graph G with edge generating set K . Let u : V (S)−→R have modulus of continuity

η . Then, for y,x,ay ∈V (S) either ax ∈V (S) or |u(ay)−u(x)| ≤ η
(
|y−1x|

)
.

Proof. To prove this, simply note that from Lemma 5.2 we know that either ax ∈ V (S) or

|y−1(ax)| ≤ |y−1x|. Thus, ax ∈V (S) or u(ay)−u(x)≤ η(|y−1x|).

Lemma 5.4. Suppose S ⊆ G is a finite strongly convex subgraph in an invariant homoge-

neous graph G with edge generating set K . Let u : V (S)−→R have modulus of continuity

η . Then, for y,x ∈V (S) achieving the supremum in η(|y−1x|) with u(y)≥ u(x)
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1. if ay ∈V (S) and ax /∈V (S), then u(ay)−u(y)≤ 0 and

2. if ax ∈V (S) and ay /∈V (S), then u(ax)−u(x)≥ 0.

Proof. To prove item 1, assume that ax /∈V (S) and write

u(ay)−u(y) = u(ay)−u(y)+u(x)−u(x)

= u(ay)−u(x)−η(|y−1x|)

≤ η(|y−1x|)−η(|y−1x|)

= 0

where the inequality follows from Lemma 5.3. Item 2 is similar to item 1 and proof is

omitted.

Lemma 5.5. Suppose S is a finite strongly convex subgraph in an invariant homogeneous

graph G with edge generating set K . Let u : V (S) −→ R have modulus of continuity η .

Then, for y,x ∈V (S) achieving the supremum in η(|y−1x|) with u(y)≥ u(x)

−Lu(y)+Lu(x)≤ ∑
a∈Y

(u(ay)−u(y))− ∑
a∈X

(u(ax)−u(x))

for any Y ⊆Ky and X ⊆Kx satisfying Y ∩ (Ky∩Kx) = X ∩ (Ky∩Kx).

Proof. From eq. (5.4) we have,

−Lu(y) + Lu(x) = ∑
a∈Ky

(u(ay)− u(y))− ∑
a∈Kx

(u(ax)− u(x))

(5.9)

= ∑
a∈Ky∩Kx

(u(ay)− u(y))− ∑
a∈Ky∩Kx

(u(ax)− u(x))

+ ∑
a∈Ky\Kx

(u(ay)− u(y))− ∑
Kx\Ky

(u(ax)− u(x)) .

Now, since Ky \Kx is the set of all a ∈K such that ay ∈ V (S) and ax /∈ V (S) and
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similarly for Kx \Ky, from Lemma 5.4 we know that

(5.10)∑
a ∈Ky\Kx

(u(ay)− u(y)) ≤ ∑
a∈Jy

(u(ay)− u(y))

(5.11)− ∑
a ∈Kx\Ky

(u(ax)− u(x)) ≤ − ∑
a∈Jx

(u(ax)− u(x))

for any Jy ⊆ Ky \Kx and Jx ⊆ Kx \Ky. Now, noting that u(y)− u(x) = η(|y−1x|),

Lemma 5.1 implies that u(ay)−u(ax)≤ u(y)−u(x) for any a ∈Ky∩Kx. Thus,

(5.12)
∑

a ∈Ky∩Kx

(u(ay)− u(y))− ∑
a ∈Ky∩Kx

(u(ax)− u(x))

≤ ∑
a∈J

(u(ay)− u(y))− ∑
a∈J

(u(ax)− u(x))

for any J ⊆Ky∩Kx. Combining eqs. (5.9) to (5.12) completes the proof.

Lemma 5.6. Suppose S is a finite strongly convex subgraph with even (odd) diameter D

of an invariant homogeneous graph G with edge generating set K and |K |= k. If u :

V (S)×R+ −→ R is a solution of eq. (5.7), then the modulus of continuity η of u satisfies

for positive even (odd) s,
dη(s, t)

dt
≤−LPη(s, t) (5.13)

where LP is the combinatorial Laplacian of the path graph P with V (P) = {s | s∈ J−D,DK

and s even (odd)} and E(P) = {{s,s+2} | s ∈ J−D,D−2K and s even (odd)}.

Proof. Choose y,x to achieve the supremum in eq. (5.8) with u(y) ≥ u(x). Say that s =

|y−1x| ∈ E where E is the appropriate choice of the set of all evens or all odds. Then, we

have that

dη(s, t)
dt

∣∣∣∣
t=t0

=

(
du(y, t)

dt
− du(x, t)

dt

)∣∣∣∣
t=t0

=−Lu(y, t0)+Lu(x, t0) (5.14)

where, to avoid excessive notation, we have adopted the convention u(y) = u(y, t0). Now,

fix a0,a1 ∈K such that a0y and a1x lie along a shortest path connecting y to x. By our
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choice, we know that a0y ∈ S and a1x ∈ S. Now, we have a few cases and in each we will

apply Lemma 5.5 with various choices of Y ,X . (In the cases that follow, we adopt the

convention that η(D+2) = η(D+1) = η(D).)

Case 1, a0x ∈ S and a1y ∈ S: In this case, we choose Y = X = {a0,a1}. Hence,

Lemma 5.5 and eq. (5.14) yield

dη(s, t)
dt

≤ u(a0y)+u(a1y)−2u(y)−u(a0x)−u(a1x)+2u(x)

= (u(a0y)−u(a1x))+(u(a1y)−u(a0x))−2(u(y)−u(x))

≤ η(s−2)+η(s+2)−2η(s)

=−LPη(s)

where the final inequality follows from eq. (5.8).

Case 2, a0x /∈ S and a1y ∈ S: In this case, we choose Y = {a0,a1} and X = {a1}.

Hence, Lemma 5.5 and eq. (5.14) yield

dη(s)
dt
≤ u(a0y)+u(a1y)−2u(y)−u(a1x)+u(x)

= (u(a0y)−u(a1x))+(u(a1y)−u(x))−2(u(y)−u(x))

≤ η(s−2)+η(s+1)−2η(s)

≤ η(s−2)+η(s+2)−2η(s)

=−LPη(s)

where the inequalities follow from eq. (5.8).

Case 3, a0x ∈ S and a1y /∈ S: This is similar to Case 2 and proof is omitted.
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Case 4, a0x /∈ S and a1y /∈ S: In this case, we choose Y = {a0} and X = {a1}. Hence,

Lemma 5.5 and eq. (5.14) yield

dη(s)
dt
≤ u(a0y)−u(y)−u(a1x)+u(x)

= (u(a0y)−u(a1x))− (u(y)−u(x))

≤ η(s−2)−η(s)

≤ η(s−2)+η(s+2)−2η(s)

=−LPη(s)

where the inequalities follow from eq. (5.8).

Thus, in all cases,
dη(s)

dt
≤−LPη(s)

provided s≥ 0.

Theorem 5.1. Let L be the combinatorial Laplacian for a strongly convex subgraph S⊆G

of an invariant homogeneous graph G. Then,

λ1(L)≥ 2
(

1− cos
(

π

D+1

))

where D is the diameter of S.

Proof. Let λ1 = λ1(L). Suppose u1 is a solution to eq. (5.7) and (u1,λ1) is the first

eigenvector-eigenvalue pair of L. Let η be the modulus of continuity for u1. For sim-

plicitly, we restrict our attention to η(s) such that s ∈ E in accordance with Lemma 5.6. In

other words, we treat η as a vector with entries indexed by s ∈ E. Then, Lemma 5.6 yields

dη(s)
dt
≤−LPη(s) for s≥ 0.
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Noting that η as defined in Lemma 5.6 is an odd function, we immediately see that

dη(s)
dt
≥−LPη(s) for s < 0

so that we have

η
>dη

dt
≤−η

>LPη .

Then,

1
2

d|η |2

dt
≤−η

>LPη

≤−µ|η |2

where µ = 2
(
1− cos

(
π

D+1

))
is the smallest non-trivial eigenvalue of LP. Hence, we have

that

|η(s)| ≤Ce−µt

for s ∈ J−D,DK and some constant C chosen independently of t. Then, there exist y,x ∈

V (S) such that,

|u1(y,0)−u1(x,0)|e−λ1t = η(s, t)

≤Ce−µt

|u1(y,0)−u1(x,0)| ≤Ce(λ1−µ)t .

Note that u1(y,0)−u1(x,0) is nonzero, so that if λ1−µ < 0 we arrive at a contradiction by

taking t→ ∞. Hence, λ1 ≥ µ .

We can alternatively prove Theorem 5.1 without using the heat equation:

Proof. Let λ1 = λ1(L). Suppose that (u1,λ1) is the first eigenvector-eigenvalue pair of
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L. Let u1 have modulus of continuity η , and let vertices x and y achieve the supremum

defining η(s) in eq. (5.8). Then

−Lu1(y)+Lu1(x) = λ1η(s).

As shown in the proof of Lemma 5.6,

−Lu1(y)+Lu1(x)≤−LPη(s).

Hence,

−λ1η(s)≤−LPη(s).

Now, since η(s)> 0 for all s > 0, we have that for s > 0,

−λ1η
2(s)≤−η(s)LPη(s).

Recalling that η is odd, this yields

−λ1|η |2 ≤−η
>LPη

≤−µ|η |2

where µ = 2
(
1− cos

(
π

D+1

))
is the smallest non-trivial eigenvalue of LP. Thus, since |η |2

is nonzero, λ1 ≥ µ and we have proven Theorem 5.1.

One should note that the two proofs of Theorem 5.1 are essentially the same, as the

lower bound on the decay-rate of the heat equation can be deduced from the `2-norm of the

modulus. Regardless, while the first method can be adapted to any non-constant function

u1, the latter cannot. Also, the reader familiar with normalized Laplacians should note that
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as a consequence of Theorem 5.1, we obtain a lower bound of 2
k

(
1− cos

(
π

D+1

))
on the

spectral gap of the normalized Laplacian for convex subgraphs of homogeneous graphs,

where k is the degree of the graph. Thus, we can compare this result to those of [23, 25].

5.3.2 Example 1: Path graphs

Consider any path graph and note that it is a convex subgraph of some homogeneous

graph. Then, Theorem 5.1 implies that the first eigenvalue

λ1(L)≥ 2
(

1− cos
(

π

D+1

))
.

This bound is tight, since the eigenvalues of the path graph are actually given by

λ j(L) = 2
(

1− cos
(

jπ
D+1

))
.

5.3.3 Example 2: Hypercube graphs

Theorem 5.2. Let L be the combinatorial Laplacian for a hypercube graph. Then, λ1(L)≥

2.

Proof. For the hypercube, we can choose K such that it is both abelian and every element

a ∈K is self-inverse. We again consider a solution u to eq. (5.14) with modulus of conti-

nuity η . Then, η either satisfies η(2)> η(1) or η(2) = η(1). Let y,x be the vertices that

achieve the supremum in η(2) with u(y)≥ u(x).
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Case 1, |y−1x|= 2: Note that in this case we can write y = b′bx for some b,b′ ∈K and

that y 6= x implies b 6= b′. Then, Equation (5.14) with s = 2 becomes

dη(2)
dt

= ∑
a∈K

(u(ay)−u(y))− ∑
a∈K

(u(ax)−u(x))

≤ (u(by)−u(bx))+(u(b′y)−u(b′x)−2η(2))

= (u(b′y)−u(bx))+(u(by)−u(b′x))−2η(2)

=−2η(2).

Above, the first inequality follows from Lemma 5.5 with Y = X = {b,b′}.

Case 2, |y−1x|= 1: Equation (5.14) with s = 1 becomes

dη(1)
dt

= ∑
a
(u(ay)−u(y))−∑

a
(u(ax)−u(x))

≤ (u(by)−u(bx))+(u(b′y)−u(b′x)−2η(1))

= (u(b′y)−u(b′x))+(u(x)−u(y))−2η(1)

≤−2η(1)

where the first inequality follows from Lemma 5.5 with X =Y = {b,b′}with b satisfying

x = by and bx = y. The second inequality follows from the definition of η . Thus, in either

case we have that
dη(2)

dt
≤−2η(2). (5.15)

Now, by either method of Theorem 5.1, λ1(L)≥ 2 and our bound is tight.

It is both remarkable and (perhaps) expected that the particular connectivity of the hy-

percube allows us to consider only points separated by a path of length 2 while still ob-

taining a tight bound. The modulus of continuity approach suggests that in many cases of
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physical interest the spectral gap is a highly local property. This result may be exploitable in

the context of quantum Ising models, where it can reduce our problem to that of estimating

the log-concavity of the ground-state wavefunction (the lowest eigenvector).

5.4 Dirichlet Eigenvalues and Ising-type Hamiltonians

Now we consider the more general problem of bounding the gap of the matrix H =

L+W , where L is the combinatorial Laplacian for some subgraph S of a homogeneous

graph and W is a positive-semidefinite matrix. In the physics literature these are known

as “stoquastic Hamiltonians” and have the same spectrum as the Dirichlet eigenvalues of S

for an appropriate choice of host graph. The key results of Section 5.4.1 should be seen as

Lemma 5.7 and Corollary 5.1.

The constant Cu0 introduced in Theorem 5.3 and Theorem 5.4 requires further explo-

ration before it provides useful bounds. However, we believe that in the case that u0 is

log-concave, for some suitably-defined notion of log-concavity, Cu0 ≥ 1. Section 5.4.2

applies the techniques of Section 5.4.1 to derive a bound on the spectral gap of H in the

one-dimensional case. Theorem 5.5 and Theorem 5.6 should be viewed as a slightly weak-

ened (but still strong) analogue of Theorem 5.3, demonstrating the utility of the methods of

section 5.4.1 and the promise of an alternative expression for Theorem 5.5 and Theorem 5.6

entirely in terms of (a measure of) the log-concavity of u0 and the diameter of S.

5.4.1 Induced subgraphs of weighted homogeneous graphs and Hamilto-

nians with potentials

In this section, we consider an induced subgraph S of a graph G with vertex set V (S)⊆

V (G) and nonempty vertex boundary δS. We let S′ = {{x,y} ∈ E(G) | x ∈ V (S) or y ∈

V (S)}. In other words, S′ is the set of all edges with at least one end in S. Then, we define
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the lowest (combinatorial) Dirichlet eigenvalue of the induced subgraph S as

λ
(D)
0 = inf

u∈D∗

∑
{x,y}∈S′

(u(x)−u(y))2

∑
y∈V (S)

u2(y)
(5.16)

where D∗ is simply the set of all nonzero functions satisfying the Dirichlet condition

u(x) = 0 for x ∈ δS.

The function u0 : V (S)∪ δS→ R achieving the infimum in eq. (5.16) is called a Dirichlet

eigenfunction and in accordance with the physics literature, we refer to u0 as a ground-

state. In the interior of S, u0 is nonzero and has constant sign, so is taken to be completely

positive. Hence, there exists a function g : V (S)∪δS−→ R satisfying

u0(y) =


eg(y) y ∈V (S)

0 y ∈ δS.
(5.17)

Above, g, the log of the ground-state, will prove a more natural consideration in much of

what follows. In general, any function u0 : V (S)∪ δS→ R such that u0 > 0 interior to S

is compatible with such a choice of g. To specify a function consistent with eq. (5.17) for

some u0 > 0, we will often write g = log(u0).

Higher Dirichlet eigenvalues can be defined generally by

λ
(D)
i = inf

u⊥Ci
u∈D∗

∑
{x,y}∈S′

(u(x)−u(y))2

∑
y∈V (S)

u2(y)
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where Ci is the subspace spanned by the i lowest nonzero Dirichlet eigenfunctions.2 Im-

posing the Dirichlet condition explicitly, we can write

λ
(D)
i = inf

u⊥Ci

∑
x∼y∈S

(u(x)−u(y))2 + ∑
y∈V (S)

W (y)u2(y)

∑
y∈V (S)

u2(y)
(5.18)

where W (y) = |{{x,y} ∈ S′ | x ∈ δS}|. Thus, we identify λ
(D)
i with the eigenvalues of the

matrix L+W where L is the combinatorial Laplacian of S and W is some diagonal matrix

with non-negative integer-valued entries.

For the remainder of this section, we adopt a somewhat more general construction.

We let H = L+W where W is any positive-semidefinite diagonal matrix. Equivalently,

W : V (G) −→ R≥0. (Since we are ultimately concerned with spectral gaps, we could

equivalently discuss W as any diagonal matrix by simply shifting W 7→ cI +W for any

c without impacting the spectral gap.) Despite relaxing the combinatorial constraints on

W , the eigenvalues of H are still given by eq. (5.18).3 H defined this way corresponds

to a subset of so-called “stoquastic Hamiltonians” which have been of recent interest in

quantum theory [20].4 Since solutions of eq. (5.18) are simply the eigenvalues of H, for

the remainder of this section we write λi = λ
(D)
i .

To bound the spectral gap γ(H), we once again wish to consider solutions to the heat

equation 
dφ(s,t)

dt =−Hφ(s, t)

φ(s,0) = φ0(s).
(5.19)

2Note that λ
(D)
i differ from those of the corresponding normalized Laplacian only by a factor of k, the

degree of G.
3These are also the Dirichlet eigenvalues for the weighted combinatorial Laplacian with W (u) =

∑
{v,u}∈∂S

w(v,u) and unit weight on the edges internal to S.

4One important stoquastic Hamiltonian would be the transverse-field Ising model with a non-negative
field.
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In general, we proceed by consider the componentwise ratio of two solutions u0 and u1 to

eq. (5.19), where we choose u0 > 0 in the interior of S. This situation is rather similar to

that considered in Section 5.3.1, but we require a relationship like eq. (5.4) to proceed. To

this end, we propose the following:

Lemma 5.7. Let S with combinatorial Laplacian L be a convex induced subgraph of some

invariant homogeneous graph. Let u0(x, t),u1(x, t) be solutions to eq. (5.19) with u0(x,0) =

u0(x) and u1(x,0) = u1(x) and satisfying the Dirichlet condition on δS. Suppose u0(x)> 0

for all x ∈V (S). If

f (x, t) =
u1(x, t)
u0(x, t)

for x ∈V (S).

and

∆a f (x, t) =


f (ax, t)− f (x, t) ax ∈V (s)

0 ax ∈ δS.

Then,
d f
dt

= ∑
a∈K

∆a f (x, t)eg(ax)−g(x)

for g = log(u) defined consistently with eq. (5.17).

Proof. For simplicity, we write f = f (t) and similarly for u0(t),u1(t). Then,

d f (x)
dt

=
1

u0(x)
du1(x)

dt
− u1(x)

u2
0(x)

du0(x)
dt

.

If u1(x) = 0, the second term is 0 and the remainder of the proof becomes trivial. Hence,

we assume that u1(x) 6= 0. Now, we recall that H = L+W where W is diagonal and apply

eq. (5.19) to get

d f (x)
dt

= f (x)
(

1
u1(x)

du1(x)
dt

− 1
u0(x)

du0(x)
dt

)
= f (x)

(
− 1

u1(x)
Hu1(x) +

1
u0(x)

Hu0(x)
)
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= f (x)
(
− 1

u1(x)
Lu1(x) +

1
u0(x)

Lu0(x)−
1

u1(x)
Wu1(x) +

1
u0(x)

Wu0(x)
)

= f (x)
(
− 1

u1(x)
Lu1(x) +

1
u0(x)

Lu0(x)−W (x) +W (x)
)

= f (x)

(
1

u1(x)
∑

a∈K
(u1(ax)− u1(x))−

1
u0(x)

∑
a∈K

(u0(ax)− u0(x))

)

= f (x)

(
∑

a∈K

(
u1(ax)
u1(x)

− 1
)
− ∑

a∈K

(
u0(ax)
u0(x)

− 1
))

= f (x) ∑
a∈K

(
u1(ax)
u1(x)

− u0(ax)
u0(x)

)
= f (x) ∑

a∈K
ax∈V (S)

(
f (ax)
f (x)

− 1
)

u0(ax)
u0(x)

= ∑
a∈K

ax∈V (S)

( f (ax)− f (x))
u0(ax)
u0(x)

= ∑
a∈K

∆a f (x)
u0(ax)
u0(x)

= ∑
a∈K

∆a f (x)eg(ax)−g(x).

Corollary 5.1. Let (u0,λ0),(u1,λ0 + γ) be the first and second eigenvector-eigenvalue

pair of H = L+W where L is a combinatorial Laplacian and W is a diagonal positive-

semidefinite matrix. Then, if u0(t),u1(t) are solutions to eq. (5.19) with u0(0) = u0 and

u1(0) = u1, we have that

−γ f (x) = ∑
a∈K

∆a f (x)eg(ax,t)−g(x,t).

for g defined consistently with eq. (5.17).

Proof. This follows from Lemma 5.7 by simply noting that f (x, t) = u1(x)
u0(x)

e−γt .
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Note that the operator acting on f and satisfying the relationships of Lemma 5.7 and

Corollary 5.1 has a constant eigenfunction with eigenvalue 0. Thus, the analysis of Sec-

tion 5.3.1 carries over identically, provided that we can appropriately bound −γ f (x). Be-

cause of this, Lemma 5.7 and Corollary 5.1 are sufficient to prove Theorem 5.3.

Theorem 5.3. Let (u0,λ ) and (u1,λ + γ) be the two lowest eigenvector-eigenvalue pairs

of H = L+W where L is a combinatorial Laplacian of a strongly convex subgraph of an

invariant homogeneous graph and W is a diagonal positive-semidefinite matrix. Let the

componentwise ratio f = u1/u0 have modulus of continuity η and g = log(u0). Then,

γ ≥ 2Cu0

(
1− cos

(
π

D+1

))

where D is the diameter of S,

Cu0 = inf
(y,x)∈ξ

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)
,

and

ξ =
{
(y,x) ∈V (S) | η

(
|y−1x|

)
= f (y)− f (x)

}
.

Proof. First, let η be the modulus of f . Then, note that by Lemma 5.5, for all (y,x) ∈ ξ

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)< 0

for appropriate choice of Y ,X . Additionally, by the method of Lemma 5.6

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)≤−LPη(|y−1x|)

with LP defined as in Theorem 5.1.
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Further, Corollary 5.1 requires that

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x) < 0.

Thus,

Cu0 = inf
{y,x}∈ξ

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)
> 0

Now, we apply Lemma 5.7 and obtain

dη(s)
dt

= ∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

≤Cu0

(
∑

a∈K
∆a f (y)− ∑

a∈K
∆a f (x)

)

≤−Cu0LPη(|y−1x|).

Hence, by the exact same argument as Theorem 5.1, we have that γ ≥Cu0 µ . Thus,

γ ≥ 2Cu0

(
1− cos

(
π

D+1

))
.

Theorem 5.4. Let (u0,λ ) and (u1,λ + γ) be the two lowest eigenvector-eigenvalue pairs

of H = L+W where L is the combinatorial Laplacian of a Hypercube graph G and W is

some diagonal positive-semidefinite matrix. Let the componentwise ratio f = u1/u0 have
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modulus of continuity η . Let g = log(u0). Then, γ ≥ 2Cu0 with

Cu0 =

∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x)

∑
a∈K

∆a f (y)− ∑
a∈K

∆a f (x)

for y,x ∈V (G) such that f (y)− f (x) = η(2).

Proof of Theorem 5.4 is omitted, since it exactly follows the approach to Theorem 5.3.

5.4.2 Example 3: Log-concave ground states

In this section we apply the techniques above to prove a gap bound in the case that H =

L+W has a log-concave ground state u0 for L corresponding to a one-dimensional graph

S. In particular, by log-concavity we mean that g : V (S)∪ δS −→ R defined consistently

with eq. (5.17) satisfies

∑
a∈K

(g(ay)−g(y))≤ 0 for all y ∈V (S). (5.20)

In more general settings, this is not a satisfactory notion of concavity, since the analogue

of a saddle-point might also satisfy this definition. However, for the one-dimensional case

considered in this section, it is appropriate. In the future, we will likely define a much

stronger notion of concavity that acts as a better analogue to the continuous definition while

still being useful in our setting. Regardless, note that concavity as defined by eq. (5.20) can

be trivially satisfied by g at any vertex connected to the boundary δS. To see this, simply

note our freedom in g in eq. (5.17) and choose g(ay)→−∞ for any ay ∈ δS.

In the case of the path graph S, we choose our edge generating set K =
{

b,b−1} and

log-concavity implies that g(bx)−2g(x)+g(b−1x)≤ 0 for all x ∈V (S).

We also introduce in this section a modulus of concavity for g. This modulus allows us
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to prove tighter bounds than the simple assumption of log-concavity itself. For a graph S

with diameter D, we call ω : [0,D]−→ R the modulus of concavity of a function g defined

on V (S) if

ω(s) = inf
|y−1x|=s

{
∆a−1g(y)+∆ag(x)

2

∣∣∣∣ |y−1a2x| ≤ |y−1x|
}
. (5.21)

Basically, the modulus of concavity tells us exactly how strongly concave g is over

a particular path separation s. Its utility lies in the expectation that as the ground-state

becomes more contracted, the spectral gap should increase.

Lemma 5.8. Suppose S is a path graph of diameter D and f : V (S)×R −→ R and γ are

defined as in Corollary 5.1. Let η be the modulus of continuity of f . Then, for s ≥ 1, η

satisfies
−γη(s) ≤ −2LPη(s)− 4(cosh(ω(s))− 1)∇η(s)

where ω is the modulus of concavity of the ground state of S, LP is the combinatorial Lapla-

cian operator for the path graph P with V (P)= J−D,DK and E(P)= {{s,s+1}}s∈J−D,D−1K,

and ∇ is the operator defined by

∇η(s) = η(s)−η(s−1).

Proof. First, we let f and g be defined as in Lemma 5.7 with f having modulus of continu-

ity η . For simplicity, let f (·) = f (·, t). Then, for y,x achieving η(s) with f (y, t) > f (x, t),

we have that

−γ ( f (y)− f (x)) = ∑
a∈K

∆a f (y)eg(ay)−g(y)− ∑
a∈K

∆a f (x)eg(ax)−g(x).

Suppose that b−1y and bx lie along a shortest path connecting y to x. We begin by
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considering the interior terms

Ψi ≡ ∆b−1 f (y)eg(b−1y)−g(y)−∆b f (x)eg(bx)−g(x).

In particular,

∆b−1 f (y) = f (b−1y)− f (y)

= f (b−1y)− f (y)+ f (x)− f (x)

= f (b−1y)− f (x)−η(s)

≤ η(s−1)−η(s).

In similar fashion, we also have that −∆b f (x)≤ (η(s−1)−η(s)). Hence,

Ψi ≤ (η(s−1)−η(s))
(

e∆
−1
b g(y)+ e∆bg(x)

)
= (η(s−1)−η(s))exp

(
∆b−1g(y)+∆bg(x)

2

)(
ep + e−p)

where p =
∆b−1g(y)−∆bg(x)

2 . Then,

Ψi ≤ 2cosh(p)(η(s−1)−η(s))exp
(

∆b−1g(y)+∆bg(x)
2

)
≤ 2cosh(p)(η(s−1)−η(s))eω(s).

where the final inequality comes from the definition of ω and the fact that η(s− 1) ≤

η(s). The outer terms follow a similar procedure, where ∆b f (y) ≤ η(s+ 1)−η(s) and
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−∆b−1 f (x)≤ η(s+1)−η(s). For these, we have that

Ψo ≡ ∆b f (y)e∆bg(y)−∆b−1 f (x)e∆b−1g(x)

≤ (η(s+1)−η(s))
(

e∆bg(y)+ e∆b−1g(x)
)

≤ (η(s+1)−η(s))
(

e−∆b−1g(y)+ e−∆bg(x)
)

= 2cosh(p)(η(s+1)−η(s))exp
(
−∆b−1g(y)−∆bg(x)

2

)
≤ 2cosh(p)(η(s+1)−η(s))e−ω(s).

Above, the second inequality follows from log-concavity and the final inequality follows

from the definition of ω .

Combining Ψi and Ψo we have that,

−γ ( f (y)− f (x)) = Ψi +Ψo

≤ 2cosh(p)
(
(η(s−1)−η(s))eω(s)+2(η(s+1)−η(s))e−ω(s)

)
≤ 2cosh(p)(−LPη(s)+R)

where

R≡ (η(s−1)−η(s))(eω(s)−1)+(η(s+1)−η(s))(e−ω(s)−1).

Above, because log-concavity requires that ω(s)≥ 0 and η is monotonic, both terms in R
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are independently non-positive. Thus,

R = (η(s−1)−η(s))(eω(s)−1)+(η(s+1)−η(s))(e−ω(s)−1)

= 2(η(s−1)−η(s))(cosh(ω(s))−1)+(η(s+1)−η(s−1))(e−ω(s)−1)

≤ 2(η(s−1)−η(s))(cosh(ω(s))−1)

and we arrive at

−γη(s) ≤ 2cosh(p)(−LPη(s)− 2(cosh(ω(s))− 1)∇η(s)) .

Since the above inequality is trivially satisfied (and hence the proposition proven) if−LPη(s)−

2(cosh(ω(s))−1)∇η(s)≥ 0, we note that cosh(p)≥ 1 and then

−γη(s) ≤ −2LPη(s)− 4(cosh(ω(s))− 1)∇η(s).

We now use Lemma 5.8 to perform various estimates on the spectral gap γ(H). For our

first estimate:

Theorem 5.5. Suppose H = L+W with ground state u0, where L is the combinatorial

Laplacian for some path graph S with diameter D and W : V (S)−→ R≥0. Then,

γ(H)≥ 4(2cosh(ω)−1)
(

1− cos
(

π

2D+1

))
≥ 4

(
1− cos

(
π

2D+1

))

for log(u0) having non-negative modulus of concavity ω and ω = infs ω(s).
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Proof. We begin with Lemma 5.8,

−γη(s)≤−2LPη(s)−4cosh(ω(s))−1))∇η(s)

=−2LPη(s)−4(cosh(ω(s))−1)(η(s)−η(s−1))

≤−2LPη(s)−4(cosh(ω(s))−1)(2η(s)−η(s+1)−η(s−1))

=−2LPη(s)−4(cosh(ω(s))−1)LPη(s)

=−2LPη(s)(2cosh(ω(s))−1))

where LP is defined as in Lemma 5.8 and the only inequality comes from adding a multiple

of the non-negative term η(s+1)−η(s). Hence, by the same analysis as Theorem 5.1,

γ(H)≥ 4inf
s
(2cosh(ω(s))−1)

(
1− cos

(
π

2D+1

))
.

Although this proof follows immediately from Lemma 5.8, taking ω → 0 and compar-

ing to Theorem 5.1 reveals that it is not tight. For one, the methods of Lemma 5.8 are

loose when ω(s) ∼ 0. This case is, of course, better handled by an approximation using

the techniques of Section 5.3.1. Nonetheless, we can still improve upon the estimate of

Theorem 5.5 in the case that the gradient of ω is bounded.

Theorem 5.6. Suppose H = L+W with ground state u0, where L is the combinatorial

Laplacian for some path graph S with diameter D and W : V (S)−→ R≥0. Then,

γ(H)≥ 4
(

1− cos
(

π

2D+1

))
+2inf

s

(
∆
− cosh(ω(s))

)
for log(u0) with non-negative modulus of concavity ω where ω(D + 1) = 0 and ω =
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infs ω(s). Above,

∆
− cosh(ω(s)) = cosh(ω(s))− cosh(ω(s+1)).

Proof. We once again begin with the result of Lemma 5.8

−γη(s) ≤ −2LPη(s)− 4(cosh(ω(s))− 1)∇η(s),

and look to estimate the contribution of the term associated with the operator ∇. To do so,

we consider the expected value of the associated term under η . Now, let ω(D+1) = 0 and

then, if ∇′η(s) = cosh(ω(s))−1)∇η(s),

η
>

∇
′
η =

D

∑
s=1

η(s)(η(s)−η(s−1))(cosh(ω(s))−1)

≥
D

∑
s=1

η(s)+η(s−1)
2

(η(s)−η(s−1))(cosh(ω(s))−1)

=
1
2

D

∑
s=1

(
η

2(s)−η
2(s−1)

)
(cosh(ω(s))−1)

where the inequality follows from the monotonicity of η . Then,

2η
>

∇
′
η =

D

∑
s=1

η
2(s)(cosh(ω(s))−1)−

D

∑
s=1

η
2(s−1)(cosh(ω(s))−1)

=
D

∑
s=1

η
2(s)(cosh(ω(s))−1)−

D−1

∑
s=1

η
2(s)(cosh(ω(s+1))−1)

=
D−1

∑
s=1

η
2(s)(cosh(ω(s))− cosh(ω(s+1)))+η

2(D)(cosh(ω(D))−1))

=
D

∑
s=1

η
2(s)∆− cosh(ω(s))

≥ inf
s

(
∆
− cosh(ω(s))

) D

∑
s=1

η
2(s).
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Hence,
2η>∇′η

|η |2
≥ inf

s
∆
− cosh(ω(s)) .

Thus, our estimate from Theorem 5.5 can be improved to

γ(H)≥ 4
(

1− cos
(

π

2D+1

))
+2inf

s

(
∆
− cosh(ω(s))

)
.
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Chapter 6: Conclusions and open problems

The examples analyzed here and in [7, 33, 54, 57, 58] show that quantum adiabatic

algorithms can succeed in finding the minimum in polynomial time in cases where classical

local search fails to do so, and can fail in cases where classical local search succeeds. For

both classical local search and adiabatic optimization, local minima of the potential that

one is seeking to minimize play an important role in determining runtime. However, as the

present work shows, these local minima do not tell the whole story. In particular, absence

of local minima does not imply large eigenvalue gap.

In addition, we note that there remains much to be learned regarding the performance

of adiabatic optimization algorithms relative to classical computation in the general case

that one is not comparing only to classical local search. In particular, the ease of modulus

of continuity methods indicate that heat diffusion processes are a good foil for adiabatic

quantum computing, and we are currently exploring algorithms of this nature.

Probably the most significant results of this dissertation are those of Chapter 5. In gen-

eral, modulus of continuity methods seem readily adaptable to both spectral graph theory

and quantum theory. In particular, the results of Section 5.3.1 demonstrate that these es-

timates are quite strong for at least a certain class of graphs. The results of Section 5.4

are not immediately applicable in physical contexts, however Section 5.4.2 demonstrates

ways in which they might be applied. These results can be strengthened by learning more

about the relationship between the ratio u1/u0 and u0 itself. Additionally, although a weak

restriction, log-concavity may be an overly strong characterization of u0 for practical pur-
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poses and one may prefer to derive results entirely in terms of the modulus of concavity

of log(u0). Further, bounds on the modulus of concavity of log(u0) should be reducible to

bounds on the modulus of concavity of the potential term W ′ as seen in [12]. This compar-

ison theorem is saved for future work, but since the potential term W ′ is typically provided

in both physical and quantum-computational contexts, in common settings this modulus of

concavity should be explicitly calculable.

There remains a great deal of work to be done on estimating runtimes for Adiabatic,

sub-stochastic, and diffusive processes as well as classical algorithms for simulating them.

The similarities between these different phenomena, mainly that they all approach their

ground-states in time that scales with the spectral gap, is suggestive that they share asymp-

totic regimes and may indeed correspond in the adiabatic limit.
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Appendix A: A sufficient condition for some node of u(µ) to separate

adjacent nodes of u(λ )

In this section we give proof of Theorem 4.2. The following proof is adapted directly

from Gantmakher and Kreĭn[38], however we consider vectors u(λ ) and u(µ) which need

not be eigenvectors of the same matrix. Rather, we require only that these vectors satisfy

eq. (4.12).

Theorem 4.2. Let u(µ;α),u(λ ;β ) be two vectors of length N satisfying eq. (4.12) and with

ΘW,i(µ−λ ;α,β )≤ 0 ∀ i ∈ Jm,nK (4.59)

where ΘW,i(µ−λ ;α,β )< 0 for at least some i ∈ Jm,nK. We extend both vectors to length

N+2 by including nodes at u0 and uN+1. (So long as eq. (4.12) is satisfied, despite previous

choices of u0 and uN+1, these points are always considered nodes.) Let η ∈ [m−1,m),ξ ∈

(n,n+ 1] be two adjacent nodes of u(λ ;β ) with m ≤ n ∈ J0,N +1K. Then there exists at

least one node of u(µ;α) between η and ξ .

Proof. First, we consider the extension of vectors u(µ;α),u(λ ;β ). From eq. (4.12) we

take W1 7→W1 +1 and, for u(λ ;β ) get

(1+W1−λ )u1(λ ) = u2(λ )+u0(λ ) (A.1)

and similarly for u(µ;α). Here, to maintain consistency between eqs. (4.12) and (A.1) we
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require that in eq. (A.1) u0 = 0. Thus, u0 is a node of u. We similarly treat uN+1 as a

node. Further, since we have shifted W1,WN by constants, eq. (4.17) is unaltered. Hence,

eq. (4.16) is unchanged and we can proceed with the proof.

Let η ∈ [m−1,m) and ξ ∈ (n,n+1] be successive nodes of u(λ ;β ) with η < ξ . With-

out loss of generality, we assume that ui(λ ;β )> 0 ∀ i ∈ Jm,nK. Then,


(m−η)um−1(λ ;β )+(η−m+1)um(λ ;β ) = 0

(n+1−ξ )un(λ ;β )+(ξ −n)un+1(λ ;β ) = 0
(A.2)

Now, again without loss of generality, we assume that ui(µ;α)> 0 ∀ i ∈ Jm,nK. Hence,

if u(µ;α) also has no nodes in (m,n), we get that


(m−η)um−1(µ;α)+(η−m+1)um(µ;α) ≥ 0

(n+1−ξ )un(µ;α)+(ξ −n)un+1(µ;α) ≥ 0
(A.3)

Combining eqs. (A.2) and (A.3) yields the inequalities

wm−1(u(µ;β ),u(λ ;α))≤ 0 (A.4)

wn(u(µ;β ),u(λ ;α))≥ 0 (A.5)

Recall from eq. (4.16) that

∆wi−1(u(µ;β ),u(λ ;α)) = ΘW,i(µ−λ ;β ,α)ui(µ;β )ui(λ ;α) (A.6)

where by summing both sides,

wn(u(µ;β ),u(λ ;α))−wm−1(u(µ;β ),u(λ ;α)) =
n

∑
i=m

ΘW,i(µ−λ ;β ,α)ui(µ;β )ui(λ ;α)

(A.7)
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Thus, by eqs. (A.4) and (A.5) we have that the left-hand side of eq. (A.7) is non-negative.

Then, by our choice of ui(λ ;α),ui(µ;β )> 0 ∀ i∈ Jm,nK, we see that if ΘW,i(µ−λ ;β ,α)≤

0 ∀ i ∈ Jm,nK with at least some i ∈ Jm,nK such that ΘW,i(µ −λ ;β ,α) < 0 we arrive at a

contradiction.
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Appendix B: For HαU(PN), the node of u(λ2) shifts left with increasing

α .

Theorem B.1. Let HαU(PN) be defined as in Lemma 4.8. Then, the node of u(λ2) shifts

left with increasing α .

Proof. The proof proceeds in analogy to Lemma 4.8. First, note that by Corollary 4.1,

〈U〉u(λ2)
≥ m−1 (B.1)

where m corresponds to the generalized zero of u(λ2). Then, like eq. (4.61)

Um−〈U〉u(λ2)
= (m−1)−〈U〉u(λ2)

≤ 0. (B.2)

Note that because u(λ2) has at least one positive and one negative term, the inequality is

strict when m = 1. If m > 1,

Um−1−〈˘2〉u(λ2)
< 0. (B.3)

Thus, by eq. (4.60)
dΘU,i

dβ
< 0 ∀i ∈ J1,mK. (B.4)

Hence, by the same logic as Lemma 4.8, Theorem 4.2 applies and the node always shifts

left with increasing α .
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