\documentclass[hyperref={bookmarks=false},aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{multirow,rotating}
\usepackage{color}
\usepackage{hyperref}
\usepackage{tikz-cd}
\usepackage{array}
\usepackage{mathtools,nccmath}%
\usepackage{etoolbox, xparse} 
\usepackage[all]{xy}
\usetikzlibrary{matrix,decorations.pathreplacing}
\def\singR{\mathcal{X}_{R}}
\def\singRbar{\mathcal{\overline{X}}_{R}}
\newcommand*{\graybullet}{\textcolor{gray}{\textbullet}}
\newcommand*{\bluebullet}{\textcolor{blue}{\textbullet}}
\newcommand*{\redbullet}{\textcolor{red}{\textbullet}}
\hypersetup{bookmarks=true,unicode=true,pdftoolbar=true,pdfmenubar=true,
	pdffitwindow=false,pdfstartview={FitH},pdftitle={UMSSM},
	pdfauthor={O. Ozdal}, pdfsubject={CAP2017},
	pdfcreator={O. Ozdal},pdfproducer={O. Ozdal}, pdfkeywords={Non-minimal 
		supersymmetry}{Beyond the Standard Model Physics}{sneutrino dark matter},
	pdfnewwindow=true,colorlinks=true,
	linkcolor=,citecolor=magenta,filecolor=magenta,urlcolor=cyan}
\NewDocumentCommand{\tens}{t_}
{%
	\IfBooleanTF{#1}
	{\tensop}
	{\otimes}%
}
\NewDocumentCommand{\tensop}{m}
{%
	\mathbin{\mathop{\otimes}\displaylimits_{#1}}%
}
% ---------------  Define theme and color scheme  -----------------
\usetheme[sidebarleft]{Caltech}  % 3 options: minimal, sidebarleft, sidebarright
%\setbeamertemplate{footline}[frame number]
% ------------  Information on the title page  --------------------
\title[]
{\bfseries{Relaxing LHC constraints on the $W_R$ mass}}
\subtitle{{\small based on \hyperlink{https://journals.aps.org/prd/pdf/10.1103/PhysRevD.99.035001}{Phys. Rev. D 99, 035001}}}
\author[]
{\underline{Özer Özdal}\inst{1} \and Mariana Frank\inst{1} \and Poulose Poulose\inst{2}}
\institute[Concordia University]
{
    Concordia University\inst{1},    
	Indian Institute of Technology Guwahati\inst{2}
}
\date[WNPFC, 2018]
{XIth International Symposium: \\
	 Quantum Theory and Symmetries (QTS)\\
	Université de Montréal\\
	July 1-5, 2019}	
% logo of my university
\titlegraphic{\includegraphics[width=3cm]{./figures/concordia-logo.png}
\hspace{7cm}  \includegraphics[width=0.9cm]{./figures/Guwahati.png}}
%------------------------------------------------------------
%------------------------------------------------------------
%The next block of commands puts the table of contents at the 
%beginning of each section and highlights the current section:
\AtBeginSection[]
{
  \begin{frame}
    \frametitle{Outline}
    \tableofcontents[currentsection]
  \end{frame}
}
%------------------------------------------------------------
\begin{document}
\frame{\titlepage}  % Creates title page
%---------   table of contents after title page  ------------
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
%---------------------------------------------------------
\section{Introduction}
%---------------------------------------------------------
\subsection{The Left-Right Symmetric Model}
%---------------------------------------------------------
\begin{frame}
\frametitle{The Left-Right Symmetric Model (LRSM)}
\begin{columns}	
	\begin{column}{0.5\textwidth}
		\color{Black}
		\centering
		
		
		{\color{Black} \small \begin{table}
				\begin{center} 
					\begin{tabular}{|c|c|c|c|} 
						\hline 
						\mbox{}\;\;\;\;\;\mbox{}& \; Fields\;  & \; $ SU(2)_L\times SU(2)_R\times U(1)_{B-L}$\; \\ 
						\hline 
						\multirow{4}{*}{\begin{sideways}Matter\end{sideways}}& \(Q_{L_i}\)  & \(({\bf 2},{\bf 1},+\frac{1}{3}) \)  \\ 
						&\(Q_{R_i}\)  & \(({\bf 1},{\bf 2},-\frac{1}{3}) \) \\ 
						&\(L_{L_i}\)  & \(({\bf 2},{\bf 1},{-1}) \) \\ 
						&\(L_{R_i}\)  & \(({\bf 1},{\bf 2},{-1}) \) \\ 						
						\hline \hline
						\multirow{3}{*}{\begin{sideways}Higgs\end{sideways}}&\(\Phi\)  & \(({\bf 2},{\bf 2},0) \)  \\ 
						&\(\Delta_L\)  & \(({\bf 3},{\bf 1},2) \)  \\ 
						&\(\Delta_R\)  & \(({\bf 1},{\bf 3},2) \)  \\ 
						\hline
					\end{tabular}
				\end{center}
		\end{table}}	
	\vspace{-0.3cm}
%$$Q_{EM}=T_{3L}+T_{3R}+\frac{B-L}{2}$$
\scriptsize
\centering
\begin{eqnarray*} 
	Q_{Li} = \begin{pmatrix}u_L \\ d_L\end{pmatrix}_i \, \sim
	(\mathbf{2},\mathbf{1},\mathbf{1/3}) \, , ~&
	Q_{Ri} =
	\begin{pmatrix}u_R \\ d_R\end{pmatrix}_i \sim
	(\mathbf{1},\mathbf{2},\mathbf{1/3}) \, ,  \qquad
\end{eqnarray*}
\begin{eqnarray*}
	L_{Li} = \begin{pmatrix}\nu_L \\ \ell_L\end{pmatrix}_i \, \sim
	(\mathbf{2},\mathbf{1},\mathbf{-1}) \, , ~&
	L_{Ri} =
	\begin{pmatrix}\nu_R \\ \ell_R\end{pmatrix}_i \sim
	(\mathbf{1},\mathbf{2},\mathbf{-1}) \, , \qquad 
\end{eqnarray*}
\end{column}
\begin{column}{0.5\textwidth}
	\centering
	\scriptsize
\begin{displaymath}	
 \hspace{0.75cm} \xymatrix{ SU(3)_C \times SU(2)_L \times & \hspace{-2.0cm} \color{red} SU(2)_R \times U(1)_{B-L} \hspace{-1.5cm} \ar[d]^{\Delta_R} \\
SU(3)_C \times  & \hspace{-1.cm}  SU(2)_L \times  \color{red} U(1)_{Y} \ar[d]^{\Phi}  \\
SU(3)_C \times & \hspace{-1.cm} U(1)_{EM}
}
\end{displaymath}
\vspace{0.3cm}
\scriptsize		
\begin{equation*}
\Phi \equiv \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (\mathbf{2},\mathbf{2},\mathbf{0})\,
\end{equation*}
\begin{eqnarray*}
\Delta_{L} \equiv \begin{pmatrix} \delta_{L}^+/\sqrt{2} & \delta_{L}^{++} \\ \delta_{L}^0 & -\delta_{L}^+/\sqrt{2} \end{pmatrix} \sim (\mathbf{3},\mathbf{1},\mathbf{2}) \\ ~~~ \Delta_{R} \equiv \begin{pmatrix} \delta_{R}^+/\sqrt{2} & \delta_{R}^{++} \\ \delta_{R}^0 & -\delta_{R}^+/\sqrt{2} \end{pmatrix} \sim (\mathbf{1},\mathbf{3},\mathbf{2})\, 
\end{eqnarray*}
		
\end{column}
\end{columns}	
\end{frame}
%---------------------------------------------------------
%\begin{frame}
%\frametitle{Field Configuration}
%\begin{eqnarray*} 
%	Q_{Li} = \begin{pmatrix}u_L \\ d_L\end{pmatrix}_i \, \sim
%	(\mathbf{2},\mathbf{1},\mathbf{1/3}) \, , ~&
%	Q_{Ri} =
%	\begin{pmatrix}u_R \\ d_R\end{pmatrix}_i \sim
%	(\mathbf{1},\mathbf{2},\mathbf{1/3}) \, ,  \qquad
%\end{eqnarray*}
%\begin{eqnarray*}
%L_{Li} = \begin{pmatrix}\nu_L \\ \ell_L\end{pmatrix}_i \, \sim
%(\mathbf{2},\mathbf{1},\mathbf{-1}) \, , ~&
%L_{Ri} =
%\begin{pmatrix}\nu_R \\ \ell_R\end{pmatrix}_i \sim
%(\mathbf{1},\mathbf{2},\mathbf{-1}) \, , \qquad 
%\end{eqnarray*}
%\pause
%\begin{equation*}
%\Phi \equiv \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim %(\mathbf{2},\mathbf{2},\mathbf{0})\,
%\end{equation*}
%\begin{equation*}
%\Delta_{L} \equiv \begin{pmatrix} \delta_{L}^+/\sqrt{2} & \delta_{L}^{++} \\ \delta_{L}^0 & -\delta_{L}^+/\sqrt{2} \end{pmatrix} \sim (\mathbf{3},\mathbf{1},\mathbf{2}) \, , ~~~ \Delta_{R} \equiv \begin{pmatrix} \delta_{R}^+/\sqrt{2} & \delta_{R}^{++} \\ \delta_{R}^0 & -\delta_{R}^+/\sqrt{2} \end{pmatrix} \sim (\mathbf{1},\mathbf{3},\mathbf{2})\, 
%\end{equation*}
%\end{frame}
%---------------------------------------------------------
%---------------------------------------------------------
\begin{frame}
\frametitle{Symmetry Breaking}
\centering
$SU(2)_R\otimes U(1)_{B-L}$ $\longrightarrow$ $U(1)_Y$
\begin{gather*} 
\quad \langle \Delta_{L}
\rangle = \begin{pmatrix} 0 & 0 \\ v_{L}e^{i\theta_L}/\sqrt{2} & 0
\end{pmatrix}, \quad \langle \Delta_{R} \rangle = \begin{pmatrix} 0 &
0 \\ \color{red} v_{R} \color{black} /\sqrt{2} & 0 \end{pmatrix}
\end{gather*} 
\pause
\vspace{0.9cm}
$SU(2)_L\otimes U(1)_{Y}$ $\longrightarrow$ $U(1)_{EM}$
\vspace{0.2cm}
$v_R \gg (\kappa_1,~\kappa_2)\gg v_L$, \hspace{2cm} $\sqrt{\kappa_1^2+\kappa_2^2} = v = 246$ GeV
\begin{gather*} 
\langle \Phi\rangle = \begin{pmatrix} \kappa_1/\sqrt{2} & 0 \\ 0 &
\kappa_2e^{i\alpha}/\sqrt{2} \end{pmatrix}
\end{gather*}
\end{frame}
%--------------------------------------------------------
\begin{frame}
\frametitle{LRSM Lagrangian}
\begin{eqnarray*}
	\mathcal{L}_{\rm{LRSM}}= \mathcal{L}_{\rm{\rm kin}}+\mathcal{L}_{Y}-V(\Phi,\Delta_L, \Delta_R) \,
\end{eqnarray*}
\pause
\vspace{0.5cm}
\begin{eqnarray*}
\mathcal{L}_{\rm kin}=i\sum\bar{\psi}\gamma^\mu D_\mu\psi \\
\end{eqnarray*}
\vspace{-0.99cm}
\scriptsize
\begin{eqnarray*}
=\bar{L}_L\gamma^{\mu}\left(i\partial_{\mu}+g_{L}\frac{\vec{\tau}}{2}\cdot\vec{W}_{L\mu}-\frac{g_{B-L}}{2}B_{\mu}\right)L_L 
+\bar{L}_R\gamma^{\mu}\left(i\partial_{\mu}+ g_{R}\frac{\vec{\tau}}{2}\cdot\vec{W}_{R\mu}-\frac{g_{B-L}}{2}B_{\mu}\right)L_R \\
+\bar{Q}_L\gamma^{\mu}\left(i\partial_{\mu}+g_{L}\frac{\vec{\tau}}{2}\cdot\vec{W}_{L\mu}+\frac{g_{B-L}}{6}B_{\mu}\right) Q_L
+\bar{Q}_R\gamma^{\mu}\left(i\partial_{\mu}+g_{R}\frac{\vec{\tau}}{2}\cdot \vec{W}_{R\mu}+\frac{g_{B-L}}{6}B_{\mu}\right)Q_R
\end{eqnarray*}
\vspace{0.5cm}
\pause
\small
\begin{eqnarray*}
\mathcal{L}_Y&=&-\Big[Y_{L_L} {\bar L}_{L} \Phi L_{R} +{\tilde Y}_{L_R} {\bar L}_R \Phi L_L+
Y_{Q_L} {\bar Q}_L {\tilde \Phi} Q_R
+{\tilde Y}_{Q_R} {\bar Q}_R {\tilde \Phi} Q_L \\
&+&\color{red} h_{L}^{ij} \color{black} \overline {L}^c_{L_i} i \tau_2 \Delta_L L_{L_j}
+\color{red} h_{R}^{ij} \color{black}\overline {L}^c_{R_i}i \tau_2 \Delta_R L_{R_j} +\rm{h.c.} \Big]\, , 
\end{eqnarray*}
\end{frame}
%--------------------------------------------------------
%--------------------------------------------------------
\begin{frame}
\frametitle{LRSM Higgs Potential}
\tiny
\begin{eqnarray*}
\!\!\! \! V(\phi,\Delta_L,\Delta_R)& = &\color{red}-\mu_{1}^2 \color{black}\left({\rm Tr}\left[\Phi^\dagger\Phi\right]\right)-\color{red} \mu_{2}^2 \color{black}\left({\rm Tr}\left[\tilde{\Phi}\Phi^\dagger\right]+\left({\rm Tr}\left[\tilde{\Phi}^\dagger\Phi\right]\right)\right)-\color{red}\mu_{3}^2 \color{black}\left({\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]+{\rm Tr}\left[\Delta_R\Delta_R^{\dagger}\right]\right) \nonumber \\
&+&\color{red} \lambda_1 \color{black} \left(\left({\rm Tr}\left[\Phi\Phi^\dagger\right]\right)^2\right)
+\color{red} \lambda_2 \color{black} \left(\left({\rm Tr}\left[\tilde{\Phi}\Phi^\dagger\right]\right)^2
+\left({\rm Tr}\left[\tilde{\Phi}^\dagger\Phi\right]\right)^2\right)
+\color{red} \lambda_3 \color{black} \left({\rm Tr}\left[\tilde{\Phi}\Phi^\dagger\right]{\rm Tr}\left[\tilde{\Phi}^\dagger\Phi\right]\right)\nonumber\\
&+&\color{red} \lambda_4 \color{black}\left({\rm Tr}\left[\Phi\Phi^{\dagger}\right]\left({\rm Tr}\left[\tilde{\Phi}\Phi^\dagger\right]
+{\rm Tr}\left[\tilde{\Phi}^\dagger\Phi\right]\right)\right) %\nonumber \\
+\color{red} \rho_1 \color{black} \left(\left({\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]\right)^2
+\left({\rm Tr}\left[\Delta_R\Delta_R^{\dagger}\right]\right)^2\right)\nonumber\\
&+&\color{red} \rho_2 \color{black} \left({\rm Tr}\left[\Delta_L\Delta_L\right]{\rm Tr}\left[\Delta_L^{\dagger}\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\Delta_R\Delta_R\right]{\rm Tr}\left[\Delta_R^{\dagger}\Delta_R^{\dagger}\right]\right) +
\color{red} \rho_3 \color{black} \left({\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]{\rm Tr}\left[\Delta_R\Delta_R^{\dagger}\right]
\right)\nonumber \\
&+&\color{red} \rho_4 \color{black} \left({\rm Tr}\left[\Delta_L\Delta_L\right]{\rm Tr}\left[\Delta_R^{\dagger}\Delta_R^{\dagger}\right]
+{\rm Tr}\left[\Delta_L^{\dagger} \Delta_L^{\dagger}\right]{\rm Tr}\left[\Delta_R\Delta_R\right]\right)
%\nonumber\\
+\color{red} \alpha_1 \color{black} {\rm Tr}\left[\Phi\Phi^{\dagger}\right]\left({\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\Delta_R\Delta_R^{\dagger}\right]\right) \nonumber \\
&+&\color{red} \alpha_2 \color{black} \left({\rm Tr}\left[\Phi\tilde{\Phi}^{\dagger}\right]{\rm Tr}\left[\Delta_R\Delta_R^{\dagger}\right]
+{\rm Tr}\left[\Phi^{\dagger}\tilde{\Phi}\right]{\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]\right)
%\nonumber \\
+\color{red} \alpha_2^{*} \color{black} \left({\rm Tr}\left[\Phi^{\dagger}\tilde{\Phi}\right]{\rm Tr}\left[\Delta_R\Delta_R^{\dagger}
\right]+{\rm Tr}\left[\tilde{\Phi}^{\dagger}\Phi\right]{\rm Tr}\left[\Delta_L\Delta_L^{\dagger}\right]\right) \nonumber \\
&+& \color{red} \alpha_3 \color{black} \left({\rm Tr}\left[\Phi\Phi^{\dagger}\Delta_L\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\Phi^{\dagger}\Phi\Delta_R\Delta_R^{\dagger}\right]\right)%\nonumber\\
+\color{red} \beta_1 \color{black}\left({\rm Tr}\left[\Phi\Delta_R\Phi^{\dagger}\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\Phi^{\dagger}\Delta_L\Phi\Delta_R^{\dagger}\right]\right)\nonumber\\
&+&\color{red} \beta_2 \color{black} \left({\rm Tr}\left[\tilde{\Phi}\Delta_R\Phi^{\dagger}\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\tilde{\Phi}^{\dagger}\Delta_L\Phi\Delta_R^{\dagger}\right]\right)%\nonumber\\
+\color{red} \beta_3 \color{black} \left({\rm Tr}\left[\Phi\Delta_R\tilde{\Phi}^{\dagger}\Delta_L^{\dagger}\right]
+{\rm Tr}\left[\Phi^{\dagger}\Delta_L\tilde{\Phi}\Delta_R^{\dagger}\right]\right)
\end{eqnarray*}
\end{frame}
%--------------------------------------------------------
%--------------------------------------------------------
\begin{frame}
\frametitle{Gauge Sector}
\begin{equation*}
\left(\begin{array}{c}Z_R^\mu\\B^\mu\end{array} \right) =
\left(\begin{array}{cc}\cos\phi&-\sin\phi\\\sin\phi&\cos\phi\end{array}\right) \left(\begin{array}{c}W_R^{3\mu}\\V^\mu\end{array} \right)
\end{equation*}
\pause
 \begin{equation*}
\left(\begin{array}{c}Z_L^\mu\\B^\mu\\Z_R^\mu\end{array} \right) =
\left(\begin{array}{ccc}\cos\theta_W&-\sin\theta_W \sin\phi&-\sin\theta_W\cos\phi\\
\sin\theta_W&\cos\theta_W\sin\phi&\cos\theta_W\cos\phi\\
0&\cos\phi&-\sin\phi\end{array}\right) \left(\begin{array}{c}W_L^{3\mu}\\W_R^{3\mu}\\V^\mu\end{array} \right)
\end{equation*}
\begin{eqnarray*}
M_{A}&=&0 \nonumber \\
M^2_{Z_{1,2}}&=&\frac14 \Big[ \left[g_L^2 v^2+2v_R^2 (g_R^2+g_{B-L}^2)\right] \\ &\mp& \sqrt{\left[g_L^2 v^2+2v_R^2 (g_R^2+g_{B-L}^2)\right]^2-4g_L^2(g_R^2+2g_{B-L}^2)v^2v_R^2} \Big] \,.
\end{eqnarray*}
\end{frame}
%--------------------------------------------------------
%---------------------------------------------------------
\subsection{Charged Sector}
%---------------------------------------------------------
\begin{frame}
\frametitle{Charged Sector}
\centering
\begin{equation*}
\left(\begin{array}{c}W_1\\W_2\end{array} \right) =
\left(\begin{array}{cc}\cos\xi&-\sin\xi\\\sin\xi&\cos\xi\end{array}\right) \left(\begin{array}{c}W_L\\W_R\end{array} \right) \, 
\end{equation*}
\vspace{0.5cm}
\pause
In the limit of $(\kappa_1, \kappa_2)\ll v_R$ and $g_R\sim g_L$ we have \\
$\displaystyle \sin\xi \approx \frac{\kappa_1\kappa_2}{v_R^2},~\sin^2\xi\approx 0,~~\cos\xi\approx 1 $, leading to 
\begin{eqnarray*}
M^2_{W_1}= \frac14 g_L^2v^2\, , \qquad M_{W_2}^2=\frac{1}{4}\left[2g_R^2v_R^2+g_R^2v^2+2g_Rg_L
\frac{\kappa^2_1\kappa^2_2}{v_R^2} \right]
\end{eqnarray*}
\end{frame}
%--------------------------------------------------------
%---------------------------------------------------------
\section{W$_R$ Mass Limits at the LHC}
%---------------------------------------------------------
%--------------------------------------------------------
\begin{frame}
\frametitle{W$_R$ Mass Limits at the LHC}
\centering
\begin{equation*}
W_R \to t\bar{b} \hspace{5cm} W_R \to jj
\end{equation*}
\includegraphics[scale=0.20]{./figures/Wprimetb_CMS.png}
\includegraphics[scale=0.20]{./figures/Wprimejj_ATLAS.png}
\end{frame}	
%--------------------------------------------------------
\begin{frame}
\frametitle{W$_R$ Mass Limits at the LHC}
\centering
\begin{equation*}
W_R \to \ell \nu_R \to \ell \ell W_R^\star \to \ell \ell q q^\prime, ~~\ell = e \hspace{0.15cm} {\rm or} \hspace{0.15cm}  \mu \, .
\end{equation*}
\includegraphics[scale=0.20]{./figures/WReejj_CMS.png}
\includegraphics[scale=0.20]{./figures/WRmumujj_CMS.png}
\end{frame}	
%--------------------------------------------------------
%---------------------------------------------------------
\section{Motivation}
%---------------------------------------------------------
\begin{frame}
\frametitle{Motivation for g$_L \neq$ g$_R$}
\centering
\begin{equation*}
\frac{1}{e^2}=\frac{1}{g_L^2}+ \frac{1}{g_R^2}+\frac{1}{g_{B-L}^2}\, , \hspace{4cm} \frac{1}{g_Y^2}= \frac{1}{g_R^2}+\frac{1}{g_{B-L}^2}\,
\end{equation*}
Setting $\displaystyle \sin \phi=\frac{g_{B-L}}{\sqrt{g_R^2+g_{B-L}^2}}$ and 
$\displaystyle \sin \theta_W=\frac{g_{Y}}{\sqrt{g_L^2+g_{Y}^2}}$, we get
\begin{columns}
	\begin{column}{0.5\textwidth}
		\begin{equation*}
		\tan \theta_W=\frac{g_R \sin \phi}{g_L} \le\frac{g_R}{g_L} \, ,
		\end{equation*}
		\begin{alertblock}{\centering Theoretical constraint on g$_R$ gauge coupling}
		\centering
		$	{g_L} \tan \theta_W \le g_R \, $
		\end{alertblock}
	\end{column}
	\begin{column}{0.4\textwidth}
		\centering
	\includegraphics[scale=0.30]{./figures/WRmassvsZRmass.png}
	\end{column}
	\end{columns}
\end{frame}	
%--------------------------------------------------------
%--------------------------------------------------------
%---------------------------------------------------------
\section{Results}
%---------------------------------------------------------
\begin{frame}
\frametitle{Analysis}
	\tiny
	\begin{table}{
		\setlength\tabcolsep{6pt}
		\renewcommand{\arraystretch}{2.0}
		\begin{tabular}{|l|c||l|c|}
			\hline
			Observable & Constraints  & Observable & Constraints \\
			\hline
			$ \Delta{B_s} $              & [10.2-26.4]  &
			$ \Delta{B_d} $                   & [0.294-0.762]  \\
			$ \Delta{M_K} $          & $<$ 5.00 $\times 10^{-15}$   & 
			$ \frac{\Delta{M_K}}{\Delta{M_K^{SM}}} $    &  [0.7-1.3]   \\
			$ \epsilon_K $    & $<$ 3.00 $\times 10^{-3}$      & 
			$\frac{\epsilon_K}{\epsilon^{SM}_K} $   & [0.7-1.3]  \\						
			BR$(B^0 \to X_s \gamma) $  & $  [2.99,3.87]\times10^{-4} $  &
			$\frac{BR(B^0 \to X_s \gamma)}{BR(B^0 \to X_s \gamma)_{SM}} $    &  [0.7-1.3]  \\
			$M_{h} $ & $ [124,126] $ GeV                                & 
			$M_{H_{1,2}^{\pm\pm}} $            & $>$ 535 GeV  \\
			$M_{H_4,A_2,H_2^{\pm}} $ &  $> 4.75 \times M_{W_R}$                                &
			&      \\								
			\hline 
		\end{tabular}
		\caption{\label{tab:constraints} Current experimental bounds imposed for consistent solutions.}}
	\end{table}
\vspace{-0.5cm}
\begin{columns}
	\begin{column}{0.4\textwidth}
		\tiny
		\begin{table}
%			\setlength\tabcolsep{20pt}
			\renewcommand{\arraystretch}{2.0}
			\begin{tabular}{|c|c|}
				\hline
				Parameter      & Scanned range \\
				\hline
				$v_{R}$          & $[2.2, ~20]$~TeV   \\
				$V_{\rm CKM}^{R}$:~~$c^R_{12},~c^R_{13},~c^R_{23}$          & $[-1,~ 1]$ \\
				diag$(h_R^{ij})$   & $[0.001,~ 1]$ \\
				\hline
			\end{tabular}
		\caption{\label{tab:scan_lim} Scanned parameter space.}
		\end{table}
	\end{column}
	\begin{column}{0.6\textwidth}
		\tiny
		\vspace{-0.75cm}
	\begin{equation*}
		M_{\nu_{R}}^{ij}=  h_{R}^{ij}v_{R}\ 
	\end{equation*}
	\begin{equation*}
	V_{\rm CKM}^R =  \begin{bmatrix}
	c^R_{12}c^R_{13} & s^R_{12}c^R_{13} & s^R_{13}e^{i\delta_R} \\
	-s^R_{12}c^R_{23}-c^R_{12}s^R_{23}s_{13}e^{i\delta_R} & c^R_{12}c^R_{23}-s^R_{12}s^R_{23}s^R_{13}e^{i\delta_R} & s^R_{23}c^R_{13} \\
	s^R_{12}s^R_{23}-c^R_{12}c^R_{23}s^R_{13}e^{i\delta_R} & -c^R_{12}c^R_{23}-s^R_{12}c^R_{23}s^R_{13}e^{i\delta_R} & c^R_{23}c^R_{13} 
	\end{bmatrix}  
	\end{equation*}
	\end{column}
\end{columns}
\end{frame}
%---------------------------------------------------------
\subsection{Scenario I: $M_{\nu_R} > M_{W_R} $}
%---------------------------------------------------------
\begin{frame}
\frametitle{ Scenario I: $M_{\nu_R} > M_{W_R} $}
\centering
\scriptsize
\begin{columns}
	\begin{column}{0.5\textwidth}
%\underline{W$_R$ $\to$ t$\bar{b}$} \hspace{4.5cm} \underline{W$_R$ $\to$ jj} \\
\centering
\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.01, $V_{\rm CKM}^L = V_{\rm CKM}^R$} \\
\vspace{0.25cm}
$\left.\begin{tabular}{l}
BR($W_R \to W_L h$)  \\
BR($W_R \to W_L Z_L$) \\
\end{tabular}\right\}$ invisible
BR($W_R \to t {\bar b}$) $\sim$ 32\% - 33\% \\
\vspace{0.75cm}
\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.5, $V_{\rm CKM}^L = V_{\rm CKM}^R$} \\
\vspace{0.25cm}
BR($W_R \to W_L h$) $\sim$ 1.95\% \\
BR($W_R \to W_L Z_L$) $\sim$ 2.0\% \\
BR($W_R \to t {\bar b}$) $\sim$ 31.0\% - 31.8\%
\vspace{0.75cm}
\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.5, $V_{\rm CKM}^L \ne V_{\rm CKM}^R$}  \\
\vspace{0.25cm}
\small
BR($W_R \to t {\bar b}$) $\sim$ 20\% for high $M_{W_R}$ (4 TeV) \\
 \hspace{2.05cm} $\sim$ 29\% for low $M_{W_R}$ (1.5 TeV)
	\end{column}
	\begin{column}{0.5\textwidth}
		\centering
		\includegraphics[scale=0.25]{./figures/WR_heavyneutrino.png} \\
		\includegraphics[scale=0.25]{./figures/WRtojj_heavyneutrino.png}
	\end{column}
\end{columns}	
\end{frame}
%---------------------------------------------------------
\subsection{Scenario II: $ M_{\nu_R} < M_{W_R} $}
%---------------------------------------------------------
\begin{frame}
\frametitle{Scenario II: $ M_{\nu_R} < M_{W_R} $}
\centering
%\underline{W$_R$ $\to$ t$\bar{b}$} \hspace{4.5cm} \underline{W$_R$ $\to$ jj} \\
\begin{columns}
	\begin{column}{0.5\textwidth}
		%\underline{W$_R$ $\to$ t$\bar{b}$} \hspace{4.5cm} \underline{W$_R$ $\to$ jj} \\
		\centering
		\scriptsize
		\underline{$g_L = g_R$ ,tan $\beta$ = 0.01, $V_{\rm CKM}^L = V_{\rm CKM}^R$} \\
		\vspace{0.25cm}
		\scriptsize
		BR($W_R \to \nu_R\ell$) $\sim$ 5.8\% (each family)	\\	
		BR($W_R \to t {\bar b}$) $\sim$ 26.5\% - 27.3\% \\
		\vspace{0.5cm}
		
		\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.01, $V_{\rm CKM}^L = V_{\rm CKM}^R$} \\
		\vspace{0.25cm}
		\scriptsize		
		BR($W_R \to \nu_R\ell$) $\sim$ 6.7\% (each family)	\\
		BR($W_R \to t {\bar b}$) $\sim$ 25.7\% - 26.5\%
		
		\vspace{0.5cm}
		\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.5, $V_{\rm CKM}^L = V_{\rm CKM}^R$} \\
		\vspace{0.25cm}
		\scriptsize
		BR($W_R \to \nu_R\ell$) $\sim$ 6.7\% (each family)	\\
		BR($W_R \to W_L h$) $\sim$ 1.95\% \\
		BR($W_R \to W_L Z_L$) $\sim$ 2.0\% \\		
		BR($W_R \to t {\bar b}$) $\sim$ 24.8\% - 25.6\%		
			
			
		\vspace{0.5cm}
		\underline{$g_L \neq g_R = 0.37$, tan $\beta$ = 0.5, $V_{\rm CKM}^L \neq V_{\rm CKM}^R$} \\
		\vspace{0.25cm}
		\scriptsize
		BR($W_R \to t {\bar b}$) $\sim$ 15.7\% for high $M_{W_R}$ (4 TeV) \\
		\hspace{2cm} $\sim$ 24.7\% for low $M_{W_R}$ (1.5 TeV)
		
	\end{column}
	\begin{column}{0.5\textwidth}
		\centering
		\includegraphics[scale=0.25]{./figures/WRtb_halfneut.png} \\
		\includegraphics[scale=0.25]{./figures/WRtojj_neuthalfWR.png}
	\end{column}
\end{columns}	
\end{frame}
\begin{frame}
\frametitle{Scenario II: $ M_{\nu_R} < M_{W_R} $}
\centering
\begin{columns}	
	\begin{column}{0.5\textwidth}
		\centering	
		\tiny	
		\vspace{-0.75cm}
	\begin{eqnarray*}	
		W_R \to \ell \nu_R \to \ell \ell \color{red} W_R^\star \color{black} \to \ell \ell q q^\prime, ~~\ell = e \hspace{0.15cm} {\rm or} \hspace{0.15cm}  \mu \, . \\
				W_R \to \ell \nu_R \to \ell \ell \color{red} W_L  \color{black} \to \ell \ell q q^\prime,~~ \ell = e \hspace{0.15cm} {\rm or} \hspace{0.15cm}  \mu \,.
		\end{eqnarray*} 
		\includegraphics[scale=0.32]{./figures/gLeqgR_BRWR3500_tanb.png}
		\vspace{-0.4cm}
	\begin{eqnarray*}
	\overline{\nu}W_L^{+\mu}\ell &\longrightarrow& \frac{i}{\sqrt{2}} \gamma^\mu \left(g_L P_L K_L\cos\xi -g_R P_R K_R\sin \xi \right) \, \\
	\overline{\nu}W_R^{+\mu}\ell &\longrightarrow& \frac{i}{\sqrt{2}} \gamma^\mu \left(g_R P_R K_R\cos\xi -g_L P_L K_L\sin \xi \right) \,
	\end{eqnarray*}				
	\end{column}
	\begin{column}{0.5\textwidth}
		\centering
		\includegraphics[scale=0.32]{./figures/BR_PHIW3500_tanb.png} \\
\begin{minipage}{0.3\textwidth}
	\tiny
$K_L$ and $K_R$ are PMNS mixing matrices in the left and right leptonic sectors, defined as
%
\begin{eqnarray*}
	K_L=V_L^{\nu\dagger}V_L^\ell, \\
	K_R=V_R^{\nu\dagger}V_R^\ell.
\end{eqnarray*} 
\end{minipage}
\begin{minipage}{0.6\textwidth}\raggedleft
	\includegraphics[width=\linewidth]{./figures/WRtolljj_Feynman.png}
\end{minipage}
\noindent
	\end{column}
	\end{columns}	
\end{frame}
\begin{frame}
\frametitle{Scenario II: $ M_{\nu_R} < M_{W_R} $}
\centering
\underline{eejj final state} \hspace{4.5cm} \underline{$\mu$$\mu$jj final state} \\
\includegraphics[scale=0.32]{./figures/halfneut_eejj.png}
\includegraphics[scale=0.32]{./figures/halfneut_mumujj.png}
\end{frame}
%---------------------------------------------------------
\subsection{Correlating $W_R$ and $\nu_R$ mass bounds}
%---------------------------------------------------------
\begin{frame}
\frametitle{Correlating $W_R$ and $\nu_R$ mass bounds}
\centering
\begin{columns}	
	\begin{column}{0.33\textwidth}
		\includegraphics[scale=0.25]{./figures/WRNRexcl_gLeqgR_eeqq_CMS.png} \\
		\includegraphics[scale=0.25]{./figures/WRNRexcl_gLeqgR_mumuqq_CMS.png}	
	\end{column}
	\pause
	\begin{column}{0.33\textwidth}
		\includegraphics[scale=0.25]{./figures/WRNRexcl_largetan_eeqq.png} \\
		\includegraphics[scale=0.25]{./figures/WRNRexcl_largetan_mumuqq.png}		
	\end{column}
	\pause
	\begin{column}{0.33\textwidth}
		\includegraphics[scale=0.25]{./figures/WRNRexcl_difCKMR_eeqq.png} \\
		\includegraphics[scale=0.25]{./figures/WRNRexcl_difCKMR_mumuqq.png}			
	\end{column}
	
\end{columns}	
\end{frame}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion}
\begin{table}[]
	\centering
	\small
	\begin{tabular}{c|c|c|c}
		\hline	\hline
		&\multicolumn{2}{c|}{ }&\\
		Scenario I: $M_{\nu_R} > M_{W_R} $	& \multicolumn{2}{c|}{Lower limits for $ M_{W_R}$ (GeV)}&Exclusion \\
		\cline{2-3}
		&&&channel \\
		&Expected&Observed&\\
		\hline \hline		
		$ g_L = g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 3450  & 3600  & $W_R \to tb$  \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 2700  & 2700  & $W_R \to tb$ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 2675  & 2675  & $W_R \to tb$ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L \neq V_{\rm CKM}^R$& 1940 & 2360& $W_R \to tb$ \\ \hline \hline
		
		$ g_L = g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 3625  & 3620 & $W_R \to jj$  \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$ & 2700 & 2555  & $W_R \to jj$ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 2650 & 2500 & $W_R \to jj$ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L \neq V_{\rm CKM}^R$	& 2010 & 2000 & $W_R \to jj$ \\ \hline \hline				
	\end{tabular}
	\caption{Lower limits for $M_{W_R}$ in GeV, when $M_{\nu_R} > M_{W_R}$.}
	\label{tab:ExclusionBoundsI}
	%	\end{center}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Conclusion}
\begin{table}[]
	\centering
	\small
	\begin{tabular}{c|c|c|c}
		\hline	\hline
		&\multicolumn{2}{c|}{ }&\\
		Scenario II: $M_{\nu_R} < M_{W_R} $	& \multicolumn{2}{c|}{Lower  limits for $M_{W_R}$ (GeV)}&Exclusion \\[1mm]
		\cline{2-3}
		&&&channel \\
		&Expected&Observed&\\ [1mm] \hline \hline
		$ g_L = g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 4420   & 4420  & $W_R \to qqee $  \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 3800  & 3800  & $W_R \to qqee $ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 3720 & 3725  & $W_R \to qqee $ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L \neq V_{\rm CKM}^R$	& 3300  & 3100  & $W_R \to qqee $ \\ \hline \hline	
		
		$ g_L = g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 4500  & 4420  & $W_R \to qq \mu\mu $  \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.01, $V_{\rm CKM}^L= V_{\rm CKM}^R$ & 3950 & 3800  & $W_R \to qq\mu \mu $ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L= V_{\rm CKM}^R$	& 3900 & 3750  & $W_R \to qq \mu \mu $ \\ \hline
		$ g_L \neq g_R $, $\tan\beta$ = 0.5, $V_{\rm CKM}^L\neq V_{\rm CKM}^R$	& 3400  & 3350  & $W_R \to qq\mu \mu $ \\ \hline \hline				
	\end{tabular}
	\caption{Lower limits for $M_{W_R}$ in GeV when $M_{\nu_R} < M_{W_R} $.}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Conclusion}
\begin{table}[]
	\begin{center}
		%\large
		\begin{tabular}{c||c|c}
			\hline
			& $\bold{BM\ I :}~ M_{\nu_R} > M_{W_R} $   &   $\bold{BM\ II :}~ M_{\nu_R} < M_{W_R} $   \\ \hline \hline
			$m_{W_R}$ [GeV]                        & 2557  & 3689 \\ \hline
			$m_{\nu_R}$ [GeV]                                 & 16797  & 1838 \\ \hline
			$\sigma$(pp $\to$ $W_R $)  [fb] @13 TeV & 48.7  & 3.98  \\ \hline
			$\sigma$(pp $\to$ $W_R $)  [fb] @27 TeV & 478.0  & 77.3  \\ \hline \hline
			BR($W_R \to  t\overline{b}$) [\%] & 26.3 & 19.9 \\ \hline 
			BR($W_R \to  jj$) [\%] & 58.6 & 45.8 \\ \hline 
			BR($W_R \to  \nu_R \ell $) [\%] & - & 6.5 (each family) \\ \hline 	
			BR($W_R \to  h_1 W_L $) [\%] & 1.8 & 1.5 \\ \hline 
			BR($W_R \to  W_L Z $) [\%] & 2.0 & 1.6  \\ \hline \hline
			BR($\nu_R \to  \ell qq^\prime $) [\%] & - & 65.3 \\ \hline 		
			BR($\nu_R \to  W_ L \ell$) [\%] & 1.1$\times 10^{-4}$ & 33.1 \\ \hline 
			BR($\nu_R \to  W_ R \ell$) [\%] & 99.9 & - \\ \hline \hline															
		\end{tabular}
		\caption{Related Branching Ratios and Cross Sections for {\bf BM I} and {\bf BM II}.}
		\label{tab:xSectionBenchmark}
	\end{center}
\end{table}
\end{frame}
\begin{frame}
\frametitle{}
\centering
{\Huge \textit{Thank you!}}
\end{frame}
\end{document}